利用高光谱图像评估阿劳卡纳阿劳卡纳个体的健康状况

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2018-12-26 DOI:10.4995/RAET.2018.10916
N. Medina, P. Vidal, R. Cifuentes, J. Torralba, F. Keusch
{"title":"利用高光谱图像评估阿劳卡纳阿劳卡纳个体的健康状况","authors":"N. Medina, P. Vidal, R. Cifuentes, J. Torralba, F. Keusch","doi":"10.4995/RAET.2018.10916","DOIUrl":null,"url":null,"abstract":"The Araucaria araucana is an endemic species from Chile and Argentina, which has a high biological, scientific and cultural value and since 2016 has shown a severe affection of leaf damage in some individuals, causing in some cases their death. The purpose of this research was to detect, from hyperspectral images, the individuals of the Araucaria species (Araucaria araucana (Molina and K. Koch)) and its degree of disease, by isolating its spectral signature and evaluating its physiological state through indices of vegetation and positioning techniques of the inflection point of the red edge, in a sector of the Ralco National Reserve, Biobío Region, Chile. Seven images were captured with the HYSPEX VNIR-1600 hyperspectral sensor, with 160 bands and a random sampling was carried out in the study area, where 90 samples of Araucarias were collected. In addition, from the remote sensing techniques applied, spatial data mining was used, in which Araucarias were classified without symptoms of disease and with symptoms of disease. A 55.11% overall accuracy was obtained in the classification of the image, 53.4% in the identification of healthy Araucaria and 55.96% in the identification of affected Araucaria. In relation to the evaluation of their sanitary status, the index with the best percentage of accuracy is the MSR (70.73%) and the one with the lowest value is the SAVI (35.47%). The positioning technique of the inflection point of the red edge delivered an accuracy percentage of 52.18% and an acceptable Kappa index.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluación del estado sanitario de individuos de Araucaria araucana a través de imágenes hiperespectrales\",\"authors\":\"N. Medina, P. Vidal, R. Cifuentes, J. Torralba, F. Keusch\",\"doi\":\"10.4995/RAET.2018.10916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Araucaria araucana is an endemic species from Chile and Argentina, which has a high biological, scientific and cultural value and since 2016 has shown a severe affection of leaf damage in some individuals, causing in some cases their death. The purpose of this research was to detect, from hyperspectral images, the individuals of the Araucaria species (Araucaria araucana (Molina and K. Koch)) and its degree of disease, by isolating its spectral signature and evaluating its physiological state through indices of vegetation and positioning techniques of the inflection point of the red edge, in a sector of the Ralco National Reserve, Biobío Region, Chile. Seven images were captured with the HYSPEX VNIR-1600 hyperspectral sensor, with 160 bands and a random sampling was carried out in the study area, where 90 samples of Araucarias were collected. In addition, from the remote sensing techniques applied, spatial data mining was used, in which Araucarias were classified without symptoms of disease and with symptoms of disease. A 55.11% overall accuracy was obtained in the classification of the image, 53.4% in the identification of healthy Araucaria and 55.96% in the identification of affected Araucaria. In relation to the evaluation of their sanitary status, the index with the best percentage of accuracy is the MSR (70.73%) and the one with the lowest value is the SAVI (35.47%). The positioning technique of the inflection point of the red edge delivered an accuracy percentage of 52.18% and an acceptable Kappa index.\",\"PeriodicalId\":43626,\"journal\":{\"name\":\"Revista de Teledeteccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Teledeteccion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/RAET.2018.10916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2018.10916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3

摘要

Araucaria araucana是智利和阿根廷的特有物种,具有很高的生物、科学和文化价值,自2016年以来,一些个体的叶子受到严重损害,在某些情况下导致它们死亡。本研究的目的是在智利Biobío地区Ralco国家保护区的一个区域,通过分离其光谱特征并通过植被指数和红边拐点定位技术评估其生理状态,从高光谱图像中检测Araucaria物种(Araucaria araucana (Molina and K. Koch))的个体及其疾病程度。利用HYSPEX VNIR-1600高光谱传感器采集7幅图像,共160个波段,在研究区进行随机抽样,共采集到90份沙蚕标本。此外,从所应用的遥感技术来看,还使用了空间数据挖掘,其中将无疾病症状和有疾病症状的沙蚕进行了分类。图像分类的总体准确率为55.11%,对健康鼠兔的识别准确率为53.4%,对患病鼠兔的识别准确率为55.96%。在卫生状况评价指标中,准确率最高的指标为MSR(70.73%),最低的指标为SAVI(35.47%)。采用红边拐点定位技术,准确率达52.18%,Kappa指数可接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluación del estado sanitario de individuos de Araucaria araucana a través de imágenes hiperespectrales
The Araucaria araucana is an endemic species from Chile and Argentina, which has a high biological, scientific and cultural value and since 2016 has shown a severe affection of leaf damage in some individuals, causing in some cases their death. The purpose of this research was to detect, from hyperspectral images, the individuals of the Araucaria species (Araucaria araucana (Molina and K. Koch)) and its degree of disease, by isolating its spectral signature and evaluating its physiological state through indices of vegetation and positioning techniques of the inflection point of the red edge, in a sector of the Ralco National Reserve, Biobío Region, Chile. Seven images were captured with the HYSPEX VNIR-1600 hyperspectral sensor, with 160 bands and a random sampling was carried out in the study area, where 90 samples of Araucarias were collected. In addition, from the remote sensing techniques applied, spatial data mining was used, in which Araucarias were classified without symptoms of disease and with symptoms of disease. A 55.11% overall accuracy was obtained in the classification of the image, 53.4% in the identification of healthy Araucaria and 55.96% in the identification of affected Araucaria. In relation to the evaluation of their sanitary status, the index with the best percentage of accuracy is the MSR (70.73%) and the one with the lowest value is the SAVI (35.47%). The positioning technique of the inflection point of the red edge delivered an accuracy percentage of 52.18% and an acceptable Kappa index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1