Maryam Samareh Salavati Pour, Fatemeh Hoseinpour Kasgari, A. Farsinejad, A. Fatemi, R. M. Khalilabadi
{"title":"血小板衍生微粒增加脐带间充质干细胞中hTERT的表达","authors":"Maryam Samareh Salavati Pour, Fatemeh Hoseinpour Kasgari, A. Farsinejad, A. Fatemi, R. M. Khalilabadi","doi":"10.18502/RMM.V5I4.3063","DOIUrl":null,"url":null,"abstract":"Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. ","PeriodicalId":30778,"journal":{"name":"Research in Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Platelet-Derived Microparticles Increase Expression of hTERT in Umbilical Cord Mesenchymal Stem Cells\",\"authors\":\"Maryam Samareh Salavati Pour, Fatemeh Hoseinpour Kasgari, A. Farsinejad, A. Fatemi, R. M. Khalilabadi\",\"doi\":\"10.18502/RMM.V5I4.3063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. \",\"PeriodicalId\":30778,\"journal\":{\"name\":\"Research in Molecular Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Molecular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/RMM.V5I4.3063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Molecular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/RMM.V5I4.3063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Platelet-Derived Microparticles Increase Expression of hTERT in Umbilical Cord Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro.