能源互联网的细粒度访问控制机制

S. Miao, Xiaojuan Zhang, Zhe Liu
{"title":"能源互联网的细粒度访问控制机制","authors":"S. Miao, Xiaojuan Zhang, Zhe Liu","doi":"10.1051/wujns/2022273231","DOIUrl":null,"url":null,"abstract":"The Energy Internet has generated huge amounts of information on the production devices, transmission devices, and energy consumption devices. The leakage of data in the collection, transmission, and storage process will cause serious security problems. The existing Energy Internet security methods rely on traditional access control mechanisms and specific network boundary defense mechanisms, which has the limitations of static strategies and coarse design. We combine the advantages of role-based access control (RBAC) and attribute-based access control (ABAC), and propose a trusted Energy Internet fine-grained access control model based on devices' attribute and users' roles. We have not only achieved fine-grained Energy Internet resource allocation, but also ensured that the access control process is related to the security status of the environment in real time. Experimental results show that the access control model can safely and accurately execute access decisions in the Energy Internet scenario, and the processing performance is more stable.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-Grained Access Control Mechanism of Energy Internet\",\"authors\":\"S. Miao, Xiaojuan Zhang, Zhe Liu\",\"doi\":\"10.1051/wujns/2022273231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Energy Internet has generated huge amounts of information on the production devices, transmission devices, and energy consumption devices. The leakage of data in the collection, transmission, and storage process will cause serious security problems. The existing Energy Internet security methods rely on traditional access control mechanisms and specific network boundary defense mechanisms, which has the limitations of static strategies and coarse design. We combine the advantages of role-based access control (RBAC) and attribute-based access control (ABAC), and propose a trusted Energy Internet fine-grained access control model based on devices' attribute and users' roles. We have not only achieved fine-grained Energy Internet resource allocation, but also ensured that the access control process is related to the security status of the environment in real time. Experimental results show that the access control model can safely and accurately execute access decisions in the Energy Internet scenario, and the processing performance is more stable.\",\"PeriodicalId\":23976,\"journal\":{\"name\":\"Wuhan University Journal of Natural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wuhan University Journal of Natural Sciences\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/wujns/2022273231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2022273231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

能源互联网已经产生了大量关于生产设备、传输设备和能源消耗设备的信息。数据在收集、传输和存储过程中的泄漏将导致严重的安全问题。现有的能源互联网安全方法依赖于传统的访问控制机制和特定的网络边界防御机制,存在静态策略和粗略设计的局限性。结合基于角色访问控制(RBAC)和基于属性访问控制(ABAC)的优点,提出了一种基于设备属性和用户角色的可信能源互联网细粒度访问控制模型。我们不仅实现了细粒度的能源互联网资源分配,还确保了访问控制过程与环境的安全状态实时相关。实验结果表明,在能源互联网场景下,该访问控制模型能够安全、准确地执行访问决策,处理性能更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-Grained Access Control Mechanism of Energy Internet
The Energy Internet has generated huge amounts of information on the production devices, transmission devices, and energy consumption devices. The leakage of data in the collection, transmission, and storage process will cause serious security problems. The existing Energy Internet security methods rely on traditional access control mechanisms and specific network boundary defense mechanisms, which has the limitations of static strategies and coarse design. We combine the advantages of role-based access control (RBAC) and attribute-based access control (ABAC), and propose a trusted Energy Internet fine-grained access control model based on devices' attribute and users' roles. We have not only achieved fine-grained Energy Internet resource allocation, but also ensured that the access control process is related to the security status of the environment in real time. Experimental results show that the access control model can safely and accurately execute access decisions in the Energy Internet scenario, and the processing performance is more stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
期刊最新文献
Comprehensive Analysis of the Role of Forkhead Box J3 (FOXJ3) in Human Cancers Three New Classes of Subsystem Codes A Note of the Interpolating Sequence in Qp∩H∞ Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm Uniform Asymptotics for Finite-Time Ruin Probabilities of Risk Models with Non-Stationary Arrivals and Strongly Subexponential Claim Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1