M. Rochette, E. Borra, Jean-Philippe Déry, A. Ritcey
{"title":"使用弹性体膜和过驱动技术的铁流体可变形反射镜的动态响应","authors":"M. Rochette, E. Borra, Jean-Philippe Déry, A. Ritcey","doi":"10.1080/15599612.2018.1465147","DOIUrl":null,"url":null,"abstract":"Abstract The experimental results obtained with a ferrofluidic deformable mirror controlled by electro-magnet actuators are presented here. Using a step input through a single actuator, we obtained a steady-state settling time of 100 ms; however, different combinations of overdrive inputs can be used to decrease it to 25 ms. A new technique which consists of laying down an elastomer membrane, coated with an aluminum film, on the ferrofluid is also discussed. By adding the membrane on the ferrofluid, it further decreases the time response by a factor of 2. Furthermore, the thin aluminum layer improves the reflectivity of the mirror. Finally, using the membrane and the overdrive techniques combined, the time response is improved by a factor of 20. Numerical simulations show that ferrofluidic mirrors using membranes and improved electronics should reach settling times of the order of a millisecond. Presumably, even lower settling times could be possible.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"12 1","pages":"20 - 30"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2018.1465147","citationCount":"1","resultStr":"{\"title\":\"Dynamic response of ferrofluidic deformable mirrors using elastomer membrane and overdrive techniques\",\"authors\":\"M. Rochette, E. Borra, Jean-Philippe Déry, A. Ritcey\",\"doi\":\"10.1080/15599612.2018.1465147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The experimental results obtained with a ferrofluidic deformable mirror controlled by electro-magnet actuators are presented here. Using a step input through a single actuator, we obtained a steady-state settling time of 100 ms; however, different combinations of overdrive inputs can be used to decrease it to 25 ms. A new technique which consists of laying down an elastomer membrane, coated with an aluminum film, on the ferrofluid is also discussed. By adding the membrane on the ferrofluid, it further decreases the time response by a factor of 2. Furthermore, the thin aluminum layer improves the reflectivity of the mirror. Finally, using the membrane and the overdrive techniques combined, the time response is improved by a factor of 20. Numerical simulations show that ferrofluidic mirrors using membranes and improved electronics should reach settling times of the order of a millisecond. Presumably, even lower settling times could be possible.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"12 1\",\"pages\":\"20 - 30\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2018.1465147\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2018.1465147\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2018.1465147","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic response of ferrofluidic deformable mirrors using elastomer membrane and overdrive techniques
Abstract The experimental results obtained with a ferrofluidic deformable mirror controlled by electro-magnet actuators are presented here. Using a step input through a single actuator, we obtained a steady-state settling time of 100 ms; however, different combinations of overdrive inputs can be used to decrease it to 25 ms. A new technique which consists of laying down an elastomer membrane, coated with an aluminum film, on the ferrofluid is also discussed. By adding the membrane on the ferrofluid, it further decreases the time response by a factor of 2. Furthermore, the thin aluminum layer improves the reflectivity of the mirror. Finally, using the membrane and the overdrive techniques combined, the time response is improved by a factor of 20. Numerical simulations show that ferrofluidic mirrors using membranes and improved electronics should reach settling times of the order of a millisecond. Presumably, even lower settling times could be possible.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)