{"title":"一种在局部结构群中进行异常检测的映射方法","authors":"Weijiang Lin, K. Worden, A. E. Maguire, E. Cross","doi":"10.1017/dce.2022.25","DOIUrl":null,"url":null,"abstract":"Abstract Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mapping method for anomaly detection in a localized population of structures\",\"authors\":\"Weijiang Lin, K. Worden, A. E. Maguire, E. Cross\",\"doi\":\"10.1017/dce.2022.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2022.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A mapping method for anomaly detection in a localized population of structures
Abstract Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.