M. I. Ullah, N. Altaf, M. Afzal, M. Arshad, N. Mehmood, M. Riaz, Sana Majeed, Sajjad Ali, A. Abdullah
{"title":"昆虫病原真菌对斜纹夜蛾(鳞翅目:夜蛾科)及其捕食者边缘夜蛾(异翅目:夜蛾科)生物学的影响","authors":"M. I. Ullah, N. Altaf, M. Afzal, M. Arshad, N. Mehmood, M. Riaz, Sana Majeed, Sajjad Ali, A. Abdullah","doi":"10.1177/1179543319867116","DOIUrl":null,"url":null,"abstract":"Entomopathogenic fungi (EPFs), Isaria fumosorosea and Beauveria bassiana, are efficient biological agents in the management of multiple arthropod pests. In this study, the effects of both EPF species on various life stages of Spodoptera litura (F.) (Lepidoptera: Noctuidae) and its natural enemy Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) were determined under laboratory conditions. I. fumosorosea significantly (P < .05) reduced the growth rate of the third and fourth instar larvae of S. litura. For relative consumption rate (RCR), the maximum impact was recorded for I. fumosorosea, which reduced the RCR of the larvae. The larvae of S. litura treated with I. fumosorosea showed significantly lower efficiency of conversion of ingested food (ECI) and the larval mortality rate (58.0%) was also higher compared with B. bassiana (33.3%). Similarly, I. fumosorosea had a significant effect on the pupal formation of S. litura; however, no significant effect was found on adult emergence percentage. To determine the effect of EPF-infected prey on the adult predator, their handling time, predatory rate, consumption rate, and the survival rate were recorded. No significant effect of EPF species on the predation rate was found. Furthermore, no significant difference was found in the survival rate of predators fed on either EPF-infected prey or healthy larvae. The interaction of these EPFs with a reduviid predator suggested that both EPF species, especially I. fumosorosea, could be used together with the predator to boost the biological control of S. litura in commercial crops.","PeriodicalId":73456,"journal":{"name":"International journal of insect science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179543319867116","citationCount":"18","resultStr":"{\"title\":\"Effects of Entomopathogenic Fungi on the Biology of Spodoptera litura (Lepidoptera: Noctuidae) and its Reduviid Predator, Rhynocoris marginatus (Heteroptera: Reduviidae)\",\"authors\":\"M. I. Ullah, N. Altaf, M. Afzal, M. Arshad, N. Mehmood, M. Riaz, Sana Majeed, Sajjad Ali, A. Abdullah\",\"doi\":\"10.1177/1179543319867116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entomopathogenic fungi (EPFs), Isaria fumosorosea and Beauveria bassiana, are efficient biological agents in the management of multiple arthropod pests. In this study, the effects of both EPF species on various life stages of Spodoptera litura (F.) (Lepidoptera: Noctuidae) and its natural enemy Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) were determined under laboratory conditions. I. fumosorosea significantly (P < .05) reduced the growth rate of the third and fourth instar larvae of S. litura. For relative consumption rate (RCR), the maximum impact was recorded for I. fumosorosea, which reduced the RCR of the larvae. The larvae of S. litura treated with I. fumosorosea showed significantly lower efficiency of conversion of ingested food (ECI) and the larval mortality rate (58.0%) was also higher compared with B. bassiana (33.3%). Similarly, I. fumosorosea had a significant effect on the pupal formation of S. litura; however, no significant effect was found on adult emergence percentage. To determine the effect of EPF-infected prey on the adult predator, their handling time, predatory rate, consumption rate, and the survival rate were recorded. No significant effect of EPF species on the predation rate was found. Furthermore, no significant difference was found in the survival rate of predators fed on either EPF-infected prey or healthy larvae. The interaction of these EPFs with a reduviid predator suggested that both EPF species, especially I. fumosorosea, could be used together with the predator to boost the biological control of S. litura in commercial crops.\",\"PeriodicalId\":73456,\"journal\":{\"name\":\"International journal of insect science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1179543319867116\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of insect science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1179543319867116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of insect science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179543319867116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Entomopathogenic Fungi on the Biology of Spodoptera litura (Lepidoptera: Noctuidae) and its Reduviid Predator, Rhynocoris marginatus (Heteroptera: Reduviidae)
Entomopathogenic fungi (EPFs), Isaria fumosorosea and Beauveria bassiana, are efficient biological agents in the management of multiple arthropod pests. In this study, the effects of both EPF species on various life stages of Spodoptera litura (F.) (Lepidoptera: Noctuidae) and its natural enemy Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) were determined under laboratory conditions. I. fumosorosea significantly (P < .05) reduced the growth rate of the third and fourth instar larvae of S. litura. For relative consumption rate (RCR), the maximum impact was recorded for I. fumosorosea, which reduced the RCR of the larvae. The larvae of S. litura treated with I. fumosorosea showed significantly lower efficiency of conversion of ingested food (ECI) and the larval mortality rate (58.0%) was also higher compared with B. bassiana (33.3%). Similarly, I. fumosorosea had a significant effect on the pupal formation of S. litura; however, no significant effect was found on adult emergence percentage. To determine the effect of EPF-infected prey on the adult predator, their handling time, predatory rate, consumption rate, and the survival rate were recorded. No significant effect of EPF species on the predation rate was found. Furthermore, no significant difference was found in the survival rate of predators fed on either EPF-infected prey or healthy larvae. The interaction of these EPFs with a reduviid predator suggested that both EPF species, especially I. fumosorosea, could be used together with the predator to boost the biological control of S. litura in commercial crops.