高分辨率单分子磁性镊子。

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Annual review of biochemistry Pub Date : 2022-02-14 DOI:10.1146/annurev-biochem-032620-104637
Hyun-Kyu Choi, Hyun Gyu Kim, M. Shon, Tae-Young Yoon
{"title":"高分辨率单分子磁性镊子。","authors":"Hyun-Kyu Choi, Hyun Gyu Kim, M. Shon, Tae-Young Yoon","doi":"10.1146/annurev-biochem-032620-104637","DOIUrl":null,"url":null,"abstract":"Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High-resolution Single-molecule Magnetic Tweezers.\",\"authors\":\"Hyun-Kyu Choi, Hyun Gyu Kim, M. Shon, Tae-Young Yoon\",\"doi\":\"10.1146/annurev-biochem-032620-104637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7980,\"journal\":{\"name\":\"Annual review of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biochem-032620-104637\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-032620-104637","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

单分子磁镊子将磁力和扭矩传递给单个目标分子,从而可以研究生物分子结构的动态变化及其相互作用。由于磁性镊子装置可以产生几十毫米的缓慢变化的磁场,远大于所观察到的单分子事件的纳米级,因此该技术可以在生物化学实验期间保持基本恒定的力水平,同时产生1-100pN量级的生物学意义的力。当使用磁珠系链结构来拉动单个分子时,更小的磁珠和更短的亚微米系链可以提高动态响应时间和测量精度。此外,采用高速相机、更强的光源和图形编程单元,可以实现真正的高分辨率单分子磁镊子,可以在毫秒甚至亚毫秒的时间尺度上跟踪目标分子的纳米变化。磁性镊子技术独特的力夹持能力提供了一种在接近平衡条件下进行测量的方法,并直接绘制各种分子现象背后的能量景观图。因此,高分辨率单分子磁镊子可以用于监测单个蛋白质分子的关键构象变化,包括那些参与机械转导和蛋白质折叠的分子。《生物化学年度评论》第91卷预计最终在线出版日期为2022年6月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution Single-molecule Magnetic Tweezers.
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
期刊最新文献
A Lipid-Raft Theory of Alzheimer's Disease. Lipid Quality Control and Ferroptosis: From Concept to Mechanism. A Life of Translocations. Signaling from RAS to RAF: The Molecules and Their Mechanisms. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1