基于潜在低秩特征和支持向量机的fMRI图像阿尔茨海默病诊断

N. Shahparian, M. Yazdi, M. Khosravi
{"title":"基于潜在低秩特征和支持向量机的fMRI图像阿尔茨海默病诊断","authors":"N. Shahparian, M. Yazdi, M. Khosravi","doi":"10.2174/1574362414666191202144116","DOIUrl":null,"url":null,"abstract":"\n\nIn recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease.\n\n\n\nTo do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage.\n\n\n\nThe obtained classification accuracy for the proposed method is more than 97.5%.\n\n\n\nWe performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.\n","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":"15 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Alzheimer Disease Diagnosis from fMRI images Based on Latent Low Rank Features and Support Vector Machine (SVM)\",\"authors\":\"N. Shahparian, M. Yazdi, M. Khosravi\",\"doi\":\"10.2174/1574362414666191202144116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease.\\n\\n\\n\\nTo do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage.\\n\\n\\n\\nThe obtained classification accuracy for the proposed method is more than 97.5%.\\n\\n\\n\\nWe performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.\\n\",\"PeriodicalId\":10868,\"journal\":{\"name\":\"Current Signal Transduction Therapy\",\"volume\":\"15 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Signal Transduction Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574362414666191202144116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574362414666191202144116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

摘要

近年来,静息状态功能磁共振成像(rs-fMRI)作为一种无创、实用的方法越来越多地应用于神经科学和心理学的各个领域,以识别大脑的机制和诊断神经系统疾病。在这项工作中,我们使用rs-fMRI数据诊断阿尔茨海默病。为此,通过使用患者的rs-fMRI,我们计算了一些解剖区域的时间序列,然后应用Latent Low Rank Representation方法提取合适的特征。接下来,基于提取的特征,我们使用支持向量机(SVM)分类器来确定患者是属于健康类别,疾病轻度阶段还是阿尔茨海默病阶段。该方法的分类准确率达到97.5%以上。我们在包含43名健康受试者、36名轻度认知障碍患者和32名阿尔茨海默患者图像的rs-fMRI数据数据库上进行了不同的实验,得到的结果表明,当使用高斯核支持向量机和仅使用7个区域的特征时,获得了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alzheimer Disease Diagnosis from fMRI images Based on Latent Low Rank Features and Support Vector Machine (SVM)
In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease. To do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage. The obtained classification accuracy for the proposed method is more than 97.5%. We performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders. The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.
期刊最新文献
Functional Roles of Long Non-coding RNAs on Stem Cell-related Pathways in Glioblastoma Antidiabetic Advancements In Silico: Pioneering Novel Heterocyclic Derivatives through Computational Design Exploring Squalene's Impact on Epidermal Thickening and Collagen Production: Molecular Docking Insights Atopic Dermatitis and Abrocitinib: Unraveling the Therapeutic Potential Atrial Natriuretic Peptide as a Biomarker and Therapeutic Target in Cancer: A Focus on Colorectal Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1