{"title":"基于潜在低秩特征和支持向量机的fMRI图像阿尔茨海默病诊断","authors":"N. Shahparian, M. Yazdi, M. Khosravi","doi":"10.2174/1574362414666191202144116","DOIUrl":null,"url":null,"abstract":"\n\nIn recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease.\n\n\n\nTo do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage.\n\n\n\nThe obtained classification accuracy for the proposed method is more than 97.5%.\n\n\n\nWe performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.\n","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":"15 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Alzheimer Disease Diagnosis from fMRI images Based on Latent Low Rank Features and Support Vector Machine (SVM)\",\"authors\":\"N. Shahparian, M. Yazdi, M. Khosravi\",\"doi\":\"10.2174/1574362414666191202144116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nIn recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease.\\n\\n\\n\\nTo do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage.\\n\\n\\n\\nThe obtained classification accuracy for the proposed method is more than 97.5%.\\n\\n\\n\\nWe performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.\\n\",\"PeriodicalId\":10868,\"journal\":{\"name\":\"Current Signal Transduction Therapy\",\"volume\":\"15 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Signal Transduction Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574362414666191202144116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574362414666191202144116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Alzheimer Disease Diagnosis from fMRI images Based on Latent Low Rank Features and Support Vector Machine (SVM)
In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly used as a noninvasive and practical method in different areas of neuroscience and psychology for recognizing brain’s mechanism as well as diagnosing neurological diseases. In this work, we use rs-fMRI data for diagnosing Alzheimer disease.
To do that, by using the rs-fMRI of a patient, we computed the time series of some anatomical regions and then applied the Latent Low Rank Representation method to extract suitable features. Next, based on the extracted features we apply a Support Vector Machine (SVM) classifier to determine whether the patient belongs to healthy category, mild stage of the disease or Alzheimer stage.
The obtained classification accuracy for the proposed method is more than 97.5%.
We performed different experiments on a database of rs-fMRI data containing the images of 43 healthy subjects, 36 mild cognitive impairment patients and 32 Alzheimer patients and the obtained results demonstrated that the best performance is achieved when the SVM with Gaussian kernel and the features of only 7 regions were used.
期刊介绍:
In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders.
The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.