支持向量机评价正向渗透膜特性对有机分子截除率的影响

Pub Date : 2023-07-13 DOI:10.15255/kui.2022.081
Fouad Kratbi, Y. Ammi, S. Hanini
{"title":"支持向量机评价正向渗透膜特性对有机分子截除率的影响","authors":"Fouad Kratbi, Y. Ammi, S. Hanini","doi":"10.15255/kui.2022.081","DOIUrl":null,"url":null,"abstract":"The forward osmosis (FO) process is currently being studied more despite other energy-consuming processes. In addition, several works show the performance of FO membranes as its major challenges, the study of the rejection of different molecules, energy consumption, and modelling of different objectives related to this process. The main purpose of our study was to evaluate the impact of the FO membranes characteristics on the rejection of organic molecules (neutral) by modelling of the latter. However, the current work deals with the application of Support Vector Machines (SVM) for predicting the rejection of organic molecules (53) by the FO membranes. In addition, the SVM model was compared with two other models: Artificial Neural Network (ANN) and Multiple Linear Regression (MLR). The coefficient of correlation ( R ) for the testing data was applied to display the best SVM model. The SVM model generated with Radial Basis Function (RBF) as the kernel function showed the best R value equal to 0.8526. MLR and ANN models had R values of 0.7630 and 0.8723, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support Vector Machines for Evaluating the Impact of the Forward Osmosis Membrane Characteristics on the Rejection of the Organic Molecules\",\"authors\":\"Fouad Kratbi, Y. Ammi, S. Hanini\",\"doi\":\"10.15255/kui.2022.081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forward osmosis (FO) process is currently being studied more despite other energy-consuming processes. In addition, several works show the performance of FO membranes as its major challenges, the study of the rejection of different molecules, energy consumption, and modelling of different objectives related to this process. The main purpose of our study was to evaluate the impact of the FO membranes characteristics on the rejection of organic molecules (neutral) by modelling of the latter. However, the current work deals with the application of Support Vector Machines (SVM) for predicting the rejection of organic molecules (53) by the FO membranes. In addition, the SVM model was compared with two other models: Artificial Neural Network (ANN) and Multiple Linear Regression (MLR). The coefficient of correlation ( R ) for the testing data was applied to display the best SVM model. The SVM model generated with Radial Basis Function (RBF) as the kernel function showed the best R value equal to 0.8526. MLR and ANN models had R values of 0.7630 and 0.8723, respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15255/kui.2022.081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/kui.2022.081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正向渗透(FO)工艺目前正在进行更多的研究,尽管有其他耗能工艺。此外,一些工作表明,FO膜的性能是其主要挑战,研究不同分子的截留率、能耗以及与该过程相关的不同目标的建模。我们研究的主要目的是通过对有机分子(中性)的建模来评估FO膜特性对有机分子排斥的影响。然而,目前的工作涉及支持向量机(SVM)在预测FO膜对有机分子(53)的排斥方面的应用。此外,将SVM模型与其他两个模型:人工神经网络(ANN)和多元线性回归(MLR)进行了比较。应用测试数据的相关系数(R)来显示最佳SVM模型。以径向基函数(RBF)为核函数生成的SVM模型的最佳R值为0.8526。MLR和ANN模型的R值分别为0.7630和0.8723。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Support Vector Machines for Evaluating the Impact of the Forward Osmosis Membrane Characteristics on the Rejection of the Organic Molecules
The forward osmosis (FO) process is currently being studied more despite other energy-consuming processes. In addition, several works show the performance of FO membranes as its major challenges, the study of the rejection of different molecules, energy consumption, and modelling of different objectives related to this process. The main purpose of our study was to evaluate the impact of the FO membranes characteristics on the rejection of organic molecules (neutral) by modelling of the latter. However, the current work deals with the application of Support Vector Machines (SVM) for predicting the rejection of organic molecules (53) by the FO membranes. In addition, the SVM model was compared with two other models: Artificial Neural Network (ANN) and Multiple Linear Regression (MLR). The coefficient of correlation ( R ) for the testing data was applied to display the best SVM model. The SVM model generated with Radial Basis Function (RBF) as the kernel function showed the best R value equal to 0.8526. MLR and ANN models had R values of 0.7630 and 0.8723, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1