Andrea Hillenbrand, U. Störl, Shamil Nabiyev, Meike Klettke
{"title":"NoSQL数据库模式进化背景下的自适应数据迁移","authors":"Andrea Hillenbrand, U. Störl, Shamil Nabiyev, Meike Klettke","doi":"10.1109/ICDEW49219.2020.00013","DOIUrl":null,"url":null,"abstract":"When NoSQL database systems are used in an agile software development setting, data model changes occur frequently and thus, data is routinely stored in different versions. The management of versioned data leads to an overhead potentially impeding the software development. Several data migration strategies exist that handle legacy data differently during data accesses, each of which can be characterized by certain advantages and disadvantages. Depending on the requirements for the software application, we evaluate and compare different migration strategies through metrics like migration costs and latency as well as precision and recall. Ideally, exactly that strategy should be selected whose characteristics fulfill service-level agreements and match the migration scenario, which depends on the query workload and the changes in the data model which imply an evolution of the database schema. In this paper, we present a methodology of self-adapting data migration, which automatically adjusts migration strategies and their parameters with respect to the migration scenario and service-level agreements, thereby contributing to the self-management of database systems and supporting agile development.","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"5 - 25"},"PeriodicalIF":1.5000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDEW49219.2020.00013","citationCount":"13","resultStr":"{\"title\":\"Self-adapting data migration in the context of schema evolution in NoSQL databases\",\"authors\":\"Andrea Hillenbrand, U. Störl, Shamil Nabiyev, Meike Klettke\",\"doi\":\"10.1109/ICDEW49219.2020.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When NoSQL database systems are used in an agile software development setting, data model changes occur frequently and thus, data is routinely stored in different versions. The management of versioned data leads to an overhead potentially impeding the software development. Several data migration strategies exist that handle legacy data differently during data accesses, each of which can be characterized by certain advantages and disadvantages. Depending on the requirements for the software application, we evaluate and compare different migration strategies through metrics like migration costs and latency as well as precision and recall. Ideally, exactly that strategy should be selected whose characteristics fulfill service-level agreements and match the migration scenario, which depends on the query workload and the changes in the data model which imply an evolution of the database schema. In this paper, we present a methodology of self-adapting data migration, which automatically adjusts migration strategies and their parameters with respect to the migration scenario and service-level agreements, thereby contributing to the self-management of database systems and supporting agile development.\",\"PeriodicalId\":50568,\"journal\":{\"name\":\"Distributed and Parallel Databases\",\"volume\":\"40 1\",\"pages\":\"5 - 25\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICDEW49219.2020.00013\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed and Parallel Databases\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDEW49219.2020.00013\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed and Parallel Databases","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/ICDEW49219.2020.00013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Self-adapting data migration in the context of schema evolution in NoSQL databases
When NoSQL database systems are used in an agile software development setting, data model changes occur frequently and thus, data is routinely stored in different versions. The management of versioned data leads to an overhead potentially impeding the software development. Several data migration strategies exist that handle legacy data differently during data accesses, each of which can be characterized by certain advantages and disadvantages. Depending on the requirements for the software application, we evaluate and compare different migration strategies through metrics like migration costs and latency as well as precision and recall. Ideally, exactly that strategy should be selected whose characteristics fulfill service-level agreements and match the migration scenario, which depends on the query workload and the changes in the data model which imply an evolution of the database schema. In this paper, we present a methodology of self-adapting data migration, which automatically adjusts migration strategies and their parameters with respect to the migration scenario and service-level agreements, thereby contributing to the self-management of database systems and supporting agile development.
期刊介绍:
Distributed and Parallel Databases publishes papers in all the traditional as well as most emerging areas of database research, including:
Availability and reliability;
Benchmarking and performance evaluation, and tuning;
Big Data Storage and Processing;
Cloud Computing and Database-as-a-Service;
Crowdsourcing;
Data curation, annotation and provenance;
Data integration, metadata Management, and interoperability;
Data models, semantics, query languages;
Data mining and knowledge discovery;
Data privacy, security, trust;
Data provenance, workflows, Scientific Data Management;
Data visualization and interactive data exploration;
Data warehousing, OLAP, Analytics;
Graph data management, RDF, social networks;
Information Extraction and Data Cleaning;
Middleware and Workflow Management;
Modern Hardware and In-Memory Database Systems;
Query Processing and Optimization;
Semantic Web and open data;
Social Networks;
Storage, indexing, and physical database design;
Streams, sensor networks, and complex event processing;
Strings, Texts, and Keyword Search;
Spatial, temporal, and spatio-temporal databases;
Transaction processing;
Uncertain, probabilistic, and approximate databases.