Thomas J. Cairnes, Christopher J. Ford, Efi Psomopoulou, N. Lepora
{"title":"机器人抓手概述","authors":"Thomas J. Cairnes, Christopher J. Ford, Efi Psomopoulou, N. Lepora","doi":"10.1109/MPOT.2023.3236143","DOIUrl":null,"url":null,"abstract":"The development of robotic grippers is driven by the need to execute particular manual tasks or meet specific objectives in handling operations. Grippers with specific functions vary from being small, accurate, and highly controllable, such as the surgical tool effectors of the Da Vinci robot (designed to be used as noninvasive grippers controlled by a human operator during keyhole surgeries), to larger, highly controllable grippers like the Shadow Dexterous Hand (designed to recreate the hand motions of a human). Additionally, there are less finely controllable grippers, such as the iRobot-Harvard-Yale (iHY) Hand or iRobot-Harvard-Yale (IIT)-Pisa SoftHand, which, instead, leverage natural motions during grasping via designs inspired by observed biomechanical systems. As robotic systems become more autonomous and widely used, it is becoming increasingly important to consider the design, form, and function of robotic grippers.","PeriodicalId":39514,"journal":{"name":"IEEE Potentials","volume":" ","pages":"17-23"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of robotic grippers\",\"authors\":\"Thomas J. Cairnes, Christopher J. Ford, Efi Psomopoulou, N. Lepora\",\"doi\":\"10.1109/MPOT.2023.3236143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of robotic grippers is driven by the need to execute particular manual tasks or meet specific objectives in handling operations. Grippers with specific functions vary from being small, accurate, and highly controllable, such as the surgical tool effectors of the Da Vinci robot (designed to be used as noninvasive grippers controlled by a human operator during keyhole surgeries), to larger, highly controllable grippers like the Shadow Dexterous Hand (designed to recreate the hand motions of a human). Additionally, there are less finely controllable grippers, such as the iRobot-Harvard-Yale (iHY) Hand or iRobot-Harvard-Yale (IIT)-Pisa SoftHand, which, instead, leverage natural motions during grasping via designs inspired by observed biomechanical systems. As robotic systems become more autonomous and widely used, it is becoming increasingly important to consider the design, form, and function of robotic grippers.\",\"PeriodicalId\":39514,\"journal\":{\"name\":\"IEEE Potentials\",\"volume\":\" \",\"pages\":\"17-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Potentials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MPOT.2023.3236143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Potentials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MPOT.2023.3236143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The development of robotic grippers is driven by the need to execute particular manual tasks or meet specific objectives in handling operations. Grippers with specific functions vary from being small, accurate, and highly controllable, such as the surgical tool effectors of the Da Vinci robot (designed to be used as noninvasive grippers controlled by a human operator during keyhole surgeries), to larger, highly controllable grippers like the Shadow Dexterous Hand (designed to recreate the hand motions of a human). Additionally, there are less finely controllable grippers, such as the iRobot-Harvard-Yale (iHY) Hand or iRobot-Harvard-Yale (IIT)-Pisa SoftHand, which, instead, leverage natural motions during grasping via designs inspired by observed biomechanical systems. As robotic systems become more autonomous and widely used, it is becoming increasingly important to consider the design, form, and function of robotic grippers.
期刊介绍:
IEEE Potentials is the magazine dedicated to undergraduate and graduate students and young professionals. IEEE Potentials explores career strategies, the latest in research, and important technical developments. Through its articles, it also relates theories to practical applications, highlights technology?s global impact and generates international forums that foster the sharing of diverse ideas about the profession.