{"title":"剑桥/桑迪亚漩涡火焰进展变量定义的条件空间评价","authors":"N. Sekularac, X. Fang, W. Bushe, M. Davy","doi":"10.1080/13647830.2023.2211537","DOIUrl":null,"url":null,"abstract":"Data from all spatial locations of nine turbulent flames in the Cambridge/Sandia swirl database are combined to study how the choice of scalar variables in conditional moment closure (CMC) type approaches affect the conditional spatial fluctuations of reactive scalars. In order to investigate the influence of swirl and stratification, two additional data-sets have been constructed. Principal component analysis (PCA) is applied to help identify the number of scalar variables and the most appropriate choices to describe the composition space. Two PCA scaling methods have been adopted, namely Pareto and Auto-scaling. Regardless of the data-set investigated and the scaling method used, the results suggest that a single principal component correlated with temperature accounted for the largest variance. For the first moment hypothesis, four progress variable, c, definitions identified by PCA are selected as conditioning variables to investigate the conditional fluctuations and normalised RMS of various species and temperature from all three databases at all axial locations. The results indicate that two control variables based on mixture fraction, Z, and progress variable significantly reduce the conditional fluctuations of scalars compared to a single variable. The selection of progress variables had minimal effects on the RMS of conditional fluctuations for all tested conditions, although a slight reduction of conditional fluctuations was found for the temperature-based progress variable, which can potentially help the further extension of CMC-based models in different flame configurations. The present study also shows that using Z and c (regardless of its definition) as two conditioning scalars enables the detachment of the thermo-chemical state from space, swirl and stratification effects. This suggests that adopting a doubly conditioned source term estimation (DCSE) approach might successfully predict the considered set of flames, assuming that ensembles are divided along the axial direction.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional space evaluation of progress variable definitions for Cambridge/Sandia swirl flames\",\"authors\":\"N. Sekularac, X. Fang, W. Bushe, M. Davy\",\"doi\":\"10.1080/13647830.2023.2211537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data from all spatial locations of nine turbulent flames in the Cambridge/Sandia swirl database are combined to study how the choice of scalar variables in conditional moment closure (CMC) type approaches affect the conditional spatial fluctuations of reactive scalars. In order to investigate the influence of swirl and stratification, two additional data-sets have been constructed. Principal component analysis (PCA) is applied to help identify the number of scalar variables and the most appropriate choices to describe the composition space. Two PCA scaling methods have been adopted, namely Pareto and Auto-scaling. Regardless of the data-set investigated and the scaling method used, the results suggest that a single principal component correlated with temperature accounted for the largest variance. For the first moment hypothesis, four progress variable, c, definitions identified by PCA are selected as conditioning variables to investigate the conditional fluctuations and normalised RMS of various species and temperature from all three databases at all axial locations. The results indicate that two control variables based on mixture fraction, Z, and progress variable significantly reduce the conditional fluctuations of scalars compared to a single variable. The selection of progress variables had minimal effects on the RMS of conditional fluctuations for all tested conditions, although a slight reduction of conditional fluctuations was found for the temperature-based progress variable, which can potentially help the further extension of CMC-based models in different flame configurations. The present study also shows that using Z and c (regardless of its definition) as two conditioning scalars enables the detachment of the thermo-chemical state from space, swirl and stratification effects. This suggests that adopting a doubly conditioned source term estimation (DCSE) approach might successfully predict the considered set of flames, assuming that ensembles are divided along the axial direction.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2211537\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2211537","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Conditional space evaluation of progress variable definitions for Cambridge/Sandia swirl flames
Data from all spatial locations of nine turbulent flames in the Cambridge/Sandia swirl database are combined to study how the choice of scalar variables in conditional moment closure (CMC) type approaches affect the conditional spatial fluctuations of reactive scalars. In order to investigate the influence of swirl and stratification, two additional data-sets have been constructed. Principal component analysis (PCA) is applied to help identify the number of scalar variables and the most appropriate choices to describe the composition space. Two PCA scaling methods have been adopted, namely Pareto and Auto-scaling. Regardless of the data-set investigated and the scaling method used, the results suggest that a single principal component correlated with temperature accounted for the largest variance. For the first moment hypothesis, four progress variable, c, definitions identified by PCA are selected as conditioning variables to investigate the conditional fluctuations and normalised RMS of various species and temperature from all three databases at all axial locations. The results indicate that two control variables based on mixture fraction, Z, and progress variable significantly reduce the conditional fluctuations of scalars compared to a single variable. The selection of progress variables had minimal effects on the RMS of conditional fluctuations for all tested conditions, although a slight reduction of conditional fluctuations was found for the temperature-based progress variable, which can potentially help the further extension of CMC-based models in different flame configurations. The present study also shows that using Z and c (regardless of its definition) as two conditioning scalars enables the detachment of the thermo-chemical state from space, swirl and stratification effects. This suggests that adopting a doubly conditioned source term estimation (DCSE) approach might successfully predict the considered set of flames, assuming that ensembles are divided along the axial direction.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.