S. Dwivedi, Ambuj Saxena, Shubham Sharma, A. Srivastava, N. Maurya
{"title":"SAC和蛋壳添加对铬增强铝基复合材料物理、力学和热性能的影响","authors":"S. Dwivedi, Ambuj Saxena, Shubham Sharma, A. Srivastava, N. Maurya","doi":"10.1080/13640461.2021.1877943","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present study, an attempt has been made to utilise spent alumina catalyst (SAC) and carbonised eggshell (CAES) in the fabrication of AA5052-based composite material. Cr was also added to further enhance the tensile strength, hardness and corrosion resistance of the material. Results showed that by adding 4.5% SAC, 4.5% CAES and 1.5% Cr in aluminium alloy, mechanical properties such as tensile strength, hardness and compressive strength enhanced significantly. Tensile strength, hardness and compressive strength increased by about 11.98%, 37.22% and 23.06%, respectively, concerning the base material. However, the toughness and ductility of composite have been reduced. Microstructure results of Al/4.5% SAC/4.5% CAES/1.5% Cr composite showed uniform. Corrosion weight loss and thermal expansion behaviour of composite have been also investigated to observe the SAC, CAES and Cr addition effect in the aluminium alloy.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":"34 1","pages":"43 - 55"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13640461.2021.1877943","citationCount":"30","resultStr":"{\"title\":\"Influence of SAC and eggshell addition in the physical, mechanical and thermal behaviour of Cr reinforced aluminium based composite\",\"authors\":\"S. Dwivedi, Ambuj Saxena, Shubham Sharma, A. Srivastava, N. Maurya\",\"doi\":\"10.1080/13640461.2021.1877943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present study, an attempt has been made to utilise spent alumina catalyst (SAC) and carbonised eggshell (CAES) in the fabrication of AA5052-based composite material. Cr was also added to further enhance the tensile strength, hardness and corrosion resistance of the material. Results showed that by adding 4.5% SAC, 4.5% CAES and 1.5% Cr in aluminium alloy, mechanical properties such as tensile strength, hardness and compressive strength enhanced significantly. Tensile strength, hardness and compressive strength increased by about 11.98%, 37.22% and 23.06%, respectively, concerning the base material. However, the toughness and ductility of composite have been reduced. Microstructure results of Al/4.5% SAC/4.5% CAES/1.5% Cr composite showed uniform. Corrosion weight loss and thermal expansion behaviour of composite have been also investigated to observe the SAC, CAES and Cr addition effect in the aluminium alloy.\",\"PeriodicalId\":13939,\"journal\":{\"name\":\"International Journal of Cast Metals Research\",\"volume\":\"34 1\",\"pages\":\"43 - 55\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13640461.2021.1877943\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cast Metals Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/13640461.2021.1877943\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2021.1877943","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Influence of SAC and eggshell addition in the physical, mechanical and thermal behaviour of Cr reinforced aluminium based composite
ABSTRACT In the present study, an attempt has been made to utilise spent alumina catalyst (SAC) and carbonised eggshell (CAES) in the fabrication of AA5052-based composite material. Cr was also added to further enhance the tensile strength, hardness and corrosion resistance of the material. Results showed that by adding 4.5% SAC, 4.5% CAES and 1.5% Cr in aluminium alloy, mechanical properties such as tensile strength, hardness and compressive strength enhanced significantly. Tensile strength, hardness and compressive strength increased by about 11.98%, 37.22% and 23.06%, respectively, concerning the base material. However, the toughness and ductility of composite have been reduced. Microstructure results of Al/4.5% SAC/4.5% CAES/1.5% Cr composite showed uniform. Corrosion weight loss and thermal expansion behaviour of composite have been also investigated to observe the SAC, CAES and Cr addition effect in the aluminium alloy.
期刊介绍:
The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.