轮廓预测在主动调度中的应用

Allan Matheus Marques Dos Santos, R. Pinto, J. C. Duarte, B. Schulze
{"title":"轮廓预测在主动调度中的应用","authors":"Allan Matheus Marques Dos Santos, R. Pinto, J. C. Duarte, B. Schulze","doi":"10.22456/2175-2745.120399","DOIUrl":null,"url":null,"abstract":"Today, cloud environments are widely used as execution platforms for most applications. In these environments, virtualized applications often share computing resources. Although this increases hardware utilization, resources competition can cause performance degradation, and knowing which applications can run on the same host without causing too much interference is key to a better scheduling and performance. Therefore, it is important to predict the resource consumption profile of applications in their subsequent iterations. This work evaluates the use of machine learning techniques to predict the increase or decrease in computational resources consumption. The prediction models are evaluated through experiments using real and benchmark applications. Finally, we conclude that some models offer significantly better performance when compared to the current trend of resource usage. These models averaged up to 94% on the F1 metric for this task.","PeriodicalId":53421,"journal":{"name":"Revista de Informatica Teorica e Aplicada","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Profile Prediction for Proactive Scheduling\",\"authors\":\"Allan Matheus Marques Dos Santos, R. Pinto, J. C. Duarte, B. Schulze\",\"doi\":\"10.22456/2175-2745.120399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, cloud environments are widely used as execution platforms for most applications. In these environments, virtualized applications often share computing resources. Although this increases hardware utilization, resources competition can cause performance degradation, and knowing which applications can run on the same host without causing too much interference is key to a better scheduling and performance. Therefore, it is important to predict the resource consumption profile of applications in their subsequent iterations. This work evaluates the use of machine learning techniques to predict the increase or decrease in computational resources consumption. The prediction models are evaluated through experiments using real and benchmark applications. Finally, we conclude that some models offer significantly better performance when compared to the current trend of resource usage. These models averaged up to 94% on the F1 metric for this task.\",\"PeriodicalId\":53421,\"journal\":{\"name\":\"Revista de Informatica Teorica e Aplicada\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Informatica Teorica e Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.120399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Informatica Teorica e Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.120399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

如今,云环境被广泛用作大多数应用程序的执行平台。在这些环境中,虚拟化的应用程序通常共享计算资源。尽管这会增加硬件利用率,但资源竞争可能会导致性能下降,了解哪些应用程序可以在同一台主机上运行而不会造成太多干扰,这是实现更好的调度和性能的关键。因此,预测应用程序在后续迭代中的资源消耗概况是很重要的。这项工作评估了机器学习技术的使用,以预测计算资源消耗的增加或减少。通过实际应用和基准测试对预测模型进行了评估。最后,我们得出结论,与当前的资源使用趋势相比,一些模型提供了明显更好的性能。这些模型在F1指标上的平均得分高达94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Profile Prediction for Proactive Scheduling
Today, cloud environments are widely used as execution platforms for most applications. In these environments, virtualized applications often share computing resources. Although this increases hardware utilization, resources competition can cause performance degradation, and knowing which applications can run on the same host without causing too much interference is key to a better scheduling and performance. Therefore, it is important to predict the resource consumption profile of applications in their subsequent iterations. This work evaluates the use of machine learning techniques to predict the increase or decrease in computational resources consumption. The prediction models are evaluated through experiments using real and benchmark applications. Finally, we conclude that some models offer significantly better performance when compared to the current trend of resource usage. These models averaged up to 94% on the F1 metric for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Informatica Teorica e Aplicada
Revista de Informatica Teorica e Aplicada Computer Science-Computer Science (all)
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Evaluación del Rendimiento de una red IPv6 utilizando IPSec en Modo Túnel Aplicación multiplataforma de modelo computacional predictivo Implementación de una solución de Inteligencia de Negocios aplicada al Suministro de Fuerza de Trabajo Análisis de los derechos a la intimidad y privacidad sobre los datos personales en la legislación Ecuatoriana Vulnerabilidades de las cookies en aplicaciones web: Redes Sociales y Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1