通过递归神经网络探测阿尔茨海默病的潜在脑动力学

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-06-01 Epub Date: 2023-06-14 DOI:10.1007/s11571-023-09981-9
Tong Li, Jiang Wang, Shanshan Li, Kai Li
{"title":"通过递归神经网络探测阿尔茨海默病的潜在脑动力学","authors":"Tong Li, Jiang Wang, Shanshan Li, Kai Li","doi":"10.1007/s11571-023-09981-9","DOIUrl":null,"url":null,"abstract":"<p><p>The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143160/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probing latent brain dynamics in Alzheimer's disease via recurrent neural network.\",\"authors\":\"Tong Li, Jiang Wang, Shanshan Li, Kai Li\",\"doi\":\"10.1007/s11571-023-09981-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09981-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09981-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)认知功能的损害显然与皮质节律的异常变化有关。然而,人们对这种相关性的内在机制仍然知之甚少。在此,我们研究了网络结构和动态特征如何改变大脑皮层节律的异常变化。为此,我们收集了注意力缺失症患者和正常患者的生物数据。通过提取脑电信号中不同子波段的能量特征,我们发现,AD 患者的节律在θ和α波段尤为特殊。正常状态的大脑皮层节律主要在 alpha 波段,而注意力缺失症患者的大脑皮层节律则转移到了 θ 波段。此外,还训练了递归神经网络(RNN),从神经计算的角度探索两种神经状态之间的节律形成和转换。研究发现,与正常状态相比,AD 状态下的神经耦合强度明显降低,从而削弱了 AD 状态下的信息传递能力。此外,研究还获得了 RNN 的低维特性。通过分析大脑皮层节律转换与低维轨迹之间的关系,得出结论:在AD状态下,低维轨迹更新更慢,通信成本更高,这解释了AD脑网络同步异常的原因。我们的研究揭示了大脑同步功能网络异常状态形成的原因,这可能会拓展我们对AD认知障碍机制的理解,并为早期AD提供脑电生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing latent brain dynamics in Alzheimer's disease via recurrent neural network.

The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
A memristor-based circuit design of avoidance learning with time delay and its application Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding EEG-based deception detection using weighted dual perspective visibility graph analysis The dynamical behavior effects of different numbers of discrete memristive synaptic coupled neurons Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1