Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato
{"title":"潮间带石鳖线粒体基因组适应性进化研究","authors":"Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato","doi":"10.1093/MOLLUS/EYAB018","DOIUrl":null,"url":null,"abstract":"\n The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/MOLLUS/EYAB018","citationCount":"2","resultStr":"{\"title\":\"Insight into the adaptive evolution of mitochondrial genomes in intertidal chitons\",\"authors\":\"Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato\",\"doi\":\"10.1093/MOLLUS/EYAB018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/MOLLUS/EYAB018\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/MOLLUS/EYAB018\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/MOLLUS/EYAB018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insight into the adaptive evolution of mitochondrial genomes in intertidal chitons
The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.