M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura
{"title":"超细气泡可缓解大豆幼苗的渗透胁迫","authors":"M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura","doi":"10.1080/1343943X.2021.2021094","DOIUrl":null,"url":null,"abstract":"ABSTRACT Growth promotion through application of ultrafine bubbles (UFBs) was observed in several crop species grown under suboptimal conditions. In the current study, mitigation of osmotic stress through polyethylene glycol 6000 (PEG6000) was analyzed in soybean seedlings to assess the effects of UFB on plants under soil drought stress. In no-nutrient conditions, growth suppression due to osmotic stress was increasingly mitigated by UFB application as stress intensity increased. Shoot biomass of UFB-treated plants (at all examined PEG6000 concentrations) exceeded to that of the absolute control. Production of superoxide radicals (O2 −) under osmotic stress was 1.5-fold higher than that in the control, whereas that in UFB-treated plant showed a similar level as the absolute control. The reduction of O2 − through treatment with UFB may help mitigate osmotic stress. In conclusion, this study quantitatively showed that UFB was effective in reducing osmotic stress in soybean seedlings.","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafine bubbles alleviated osmotic stress in soybean seedlings\",\"authors\":\"M. Iijima, Kaito Yamashita, Y. Hirooka, Y. Ueda, K. Yamane, Chikashi Kamimura\",\"doi\":\"10.1080/1343943X.2021.2021094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Growth promotion through application of ultrafine bubbles (UFBs) was observed in several crop species grown under suboptimal conditions. In the current study, mitigation of osmotic stress through polyethylene glycol 6000 (PEG6000) was analyzed in soybean seedlings to assess the effects of UFB on plants under soil drought stress. In no-nutrient conditions, growth suppression due to osmotic stress was increasingly mitigated by UFB application as stress intensity increased. Shoot biomass of UFB-treated plants (at all examined PEG6000 concentrations) exceeded to that of the absolute control. Production of superoxide radicals (O2 −) under osmotic stress was 1.5-fold higher than that in the control, whereas that in UFB-treated plant showed a similar level as the absolute control. The reduction of O2 − through treatment with UFB may help mitigate osmotic stress. In conclusion, this study quantitatively showed that UFB was effective in reducing osmotic stress in soybean seedlings.\",\"PeriodicalId\":20259,\"journal\":{\"name\":\"Plant Production Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Production Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1343943X.2021.2021094\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2021.2021094","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Ultrafine bubbles alleviated osmotic stress in soybean seedlings
ABSTRACT Growth promotion through application of ultrafine bubbles (UFBs) was observed in several crop species grown under suboptimal conditions. In the current study, mitigation of osmotic stress through polyethylene glycol 6000 (PEG6000) was analyzed in soybean seedlings to assess the effects of UFB on plants under soil drought stress. In no-nutrient conditions, growth suppression due to osmotic stress was increasingly mitigated by UFB application as stress intensity increased. Shoot biomass of UFB-treated plants (at all examined PEG6000 concentrations) exceeded to that of the absolute control. Production of superoxide radicals (O2 −) under osmotic stress was 1.5-fold higher than that in the control, whereas that in UFB-treated plant showed a similar level as the absolute control. The reduction of O2 − through treatment with UFB may help mitigate osmotic stress. In conclusion, this study quantitatively showed that UFB was effective in reducing osmotic stress in soybean seedlings.
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.