{"title":"关于Hilbert第19问题中所有极值的Hölder正则性","authors":"F. Tomi, A. Tromba","doi":"10.1515/acv-2021-0089","DOIUrl":null,"url":null,"abstract":"Abstract Let Ω ⊂ ℝ n {\\Omega\\subset\\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n N → ℝ {F:\\Omega\\times\\mathbb{R}^{nN}\\to\\mathbb{R}} , F ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p F {F_{p}:=D_{p}F} continuous on Ω × ℝ n N {\\Omega\\times\\mathbb{R}^{nN}} and F strictly convex in p. Consider an n N × n N {nN\\times nN} matrix A = ( A α β i j ) ∈ C 0 ( Ω ) {A=(A^{{ij}}_{\\alpha\\beta})\\in C^{0}(\\Omega)} satisfying (0.1) A α β i j ( x ) ξ α i ξ β j = A β α j i ( x ) ξ α i ξ β j ≥ λ | ξ | 2 , λ > 0 . A^{ij}_{\\alpha\\beta}(x)\\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}=A^{ji}_{\\beta\\alpha}(x)% \\xi^{i}_{\\alpha}\\xi^{j}_{\\beta}\\geq\\lambda\\lvert\\xi\\rvert^{2},\\quad\\lambda>0. Suppose that (0.2) lim | p | → ∞ 1 | p | ( D p F ( x , p ) - A ( x ) p ) = 0 , \\displaystyle\\lim_{\\lvert p\\rvert\\to\\infty}\\frac{1}{\\lvert p\\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 | p | 2 ≤ F ( x , p ) ≤ C 0 ( 1 + | p | 2 ) , \\displaystyle{-}C_{0}+c_{0}\\lvert p\\rvert^{2}\\leq F(x,p)\\leq C_{0}(1+\\lvert p% \\rvert^{2}), (0.4) | F p ( x , p ) - F p ( x , q ) | ≤ C 0 | p - q | , \\displaystyle\\lvert F_{p}(x,p)-F_{p}(x,q)\\rvert\\leq C_{0}\\lvert p-q\\rvert, (0.5) 〈 F p ( x , p ) - F p ( x , q ) , p - q 〉 ≥ c 0 | p - q | 2 \\displaystyle\\langle F_{p}(x,p)-F_{p}(x,q),p-q\\rangle\\geq c_{0}\\lvert p-q% \\rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ( u ) := ∫ Ω F ( x , D u ( x ) ) 𝑑 x + ∫ Ω G ( x , u ) 𝑑 x , J(u):=\\int_{\\Omega}F(x,Du(x))\\,dx+\\int_{\\Omega}G(x,u)\\,dx, where G ( x , ⋅ ) ∈ C 1 ( ℝ N ) {G(x,\\cdot\\,)\\in C^{1}(\\mathbb{R}^{N})} for each x ∈ Ω {x\\in\\Omega} , G ( ⋅ , u ) {G(\\,\\cdot\\,,u)} is measurable for each u ∈ ℝ N {u\\in\\mathbb{R}^{N}} , and (0.7) | G u ( x , u ) | ≤ C 0 ( 1 + | u | s ) \\lvert G_{u}(x,u)\\rvert\\leq C_{0}(1+\\lvert u\\rvert^{s}) with s < n + 2 n - 2 {s<\\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ( Ω , ℝ N ) {u\\in W^{1,2}(\\Omega,\\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ x α F p α i ( x , D u ) = G u i ( x , u ) , i = 1 , … , N , \\sum_{\\alpha}\\frac{\\partial}{\\partial x^{\\alpha}}F_{p^{i}_{\\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\\quad i=1,\\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hölder regularity of all extrema in Hilbert’s 19th Problem\",\"authors\":\"F. Tomi, A. Tromba\",\"doi\":\"10.1515/acv-2021-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Ω ⊂ ℝ n {\\\\Omega\\\\subset\\\\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n N → ℝ {F:\\\\Omega\\\\times\\\\mathbb{R}^{nN}\\\\to\\\\mathbb{R}} , F ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p F {F_{p}:=D_{p}F} continuous on Ω × ℝ n N {\\\\Omega\\\\times\\\\mathbb{R}^{nN}} and F strictly convex in p. Consider an n N × n N {nN\\\\times nN} matrix A = ( A α β i j ) ∈ C 0 ( Ω ) {A=(A^{{ij}}_{\\\\alpha\\\\beta})\\\\in C^{0}(\\\\Omega)} satisfying (0.1) A α β i j ( x ) ξ α i ξ β j = A β α j i ( x ) ξ α i ξ β j ≥ λ | ξ | 2 , λ > 0 . A^{ij}_{\\\\alpha\\\\beta}(x)\\\\xi^{i}_{\\\\alpha}\\\\xi^{j}_{\\\\beta}=A^{ji}_{\\\\beta\\\\alpha}(x)% \\\\xi^{i}_{\\\\alpha}\\\\xi^{j}_{\\\\beta}\\\\geq\\\\lambda\\\\lvert\\\\xi\\\\rvert^{2},\\\\quad\\\\lambda>0. Suppose that (0.2) lim | p | → ∞ 1 | p | ( D p F ( x , p ) - A ( x ) p ) = 0 , \\\\displaystyle\\\\lim_{\\\\lvert p\\\\rvert\\\\to\\\\infty}\\\\frac{1}{\\\\lvert p\\\\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 | p | 2 ≤ F ( x , p ) ≤ C 0 ( 1 + | p | 2 ) , \\\\displaystyle{-}C_{0}+c_{0}\\\\lvert p\\\\rvert^{2}\\\\leq F(x,p)\\\\leq C_{0}(1+\\\\lvert p% \\\\rvert^{2}), (0.4) | F p ( x , p ) - F p ( x , q ) | ≤ C 0 | p - q | , \\\\displaystyle\\\\lvert F_{p}(x,p)-F_{p}(x,q)\\\\rvert\\\\leq C_{0}\\\\lvert p-q\\\\rvert, (0.5) 〈 F p ( x , p ) - F p ( x , q ) , p - q 〉 ≥ c 0 | p - q | 2 \\\\displaystyle\\\\langle F_{p}(x,p)-F_{p}(x,q),p-q\\\\rangle\\\\geq c_{0}\\\\lvert p-q% \\\\rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ( u ) := ∫ Ω F ( x , D u ( x ) ) 𝑑 x + ∫ Ω G ( x , u ) 𝑑 x , J(u):=\\\\int_{\\\\Omega}F(x,Du(x))\\\\,dx+\\\\int_{\\\\Omega}G(x,u)\\\\,dx, where G ( x , ⋅ ) ∈ C 1 ( ℝ N ) {G(x,\\\\cdot\\\\,)\\\\in C^{1}(\\\\mathbb{R}^{N})} for each x ∈ Ω {x\\\\in\\\\Omega} , G ( ⋅ , u ) {G(\\\\,\\\\cdot\\\\,,u)} is measurable for each u ∈ ℝ N {u\\\\in\\\\mathbb{R}^{N}} , and (0.7) | G u ( x , u ) | ≤ C 0 ( 1 + | u | s ) \\\\lvert G_{u}(x,u)\\\\rvert\\\\leq C_{0}(1+\\\\lvert u\\\\rvert^{s}) with s < n + 2 n - 2 {s<\\\\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ( Ω , ℝ N ) {u\\\\in W^{1,2}(\\\\Omega,\\\\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ x α F p α i ( x , D u ) = G u i ( x , u ) , i = 1 , … , N , \\\\sum_{\\\\alpha}\\\\frac{\\\\partial}{\\\\partial x^{\\\\alpha}}F_{p^{i}_{\\\\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\\\\quad i=1,\\\\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2021-0089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2021-0089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设Ω∧∈n {\Omega\subset\mathbb{R}^{n}} 是C {c ^{1}} 光滑紧致域。更进一步,设F: Ω x, n, n,→ {f:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F∑(x, p) {F(x,p)} ,是C 0 {c ^{0}} ,对p可导,对F可导,p = dp∑F {f_{p}:= d_{p}f} 在Ω上连续的 {\Omega\times\mathbb{R}^{nN}} F在p中是严格凸的,考虑n n × n n {nN\times nN} 矩阵A = (A α _ β i _ j)∈c0 _ (Ω) {a =(a ^{{ij}}_{\alpha\beta})\in c ^{0}(\Omega)} 满足(0.1)A α减去β i减去j减去(x)减去ξ α i减去ξ β j = A β减去α j减去i减去(x)减去ξ α i减去ξ β j≥λ减去| ξ | 2, λ > 0。a ^{ij}_{\alpha\beta}(x)\xi^{I}_{\alpha}\xi^{j}_{\beta}= a ^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ 1 | p | ( D p F ( x , p ) - A ( x ) p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 | p | 2 ≤ F ( x , p ) ≤ C 0 ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ( x , p ) - F p ( x , q ) | ≤ C 0 | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ( x , p ) - F p ( x , q ) , p - q 〉 ≥ c 0 | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ( u ) := ∫ Ω F ( x , D u ( x ) ) 𝑑 x + ∫ Ω G ( x , u ) 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ( x , ⋅ ) ∈ C 1 ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ( x , u ) | ≤ C 0 ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s 2 {n>2} , then any weak solution u ∈ W 1 , 2 ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ x α F p α i ( x , D u ) = G u i ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
On the Hölder regularity of all extrema in Hilbert’s 19th Problem
Abstract Let Ω ⊂ ℝ n {\Omega\subset\mathbb{R}^{n}} be a C 1 {C^{1}} smooth compact domain. Furthermore, let F : Ω × ℝ n N → ℝ {F:\Omega\times\mathbb{R}^{nN}\to\mathbb{R}} , F ( x , p ) {F(x,p)} , be C 0 {C^{0}} , differentiable with respect to p, and with F p := D p F {F_{p}:=D_{p}F} continuous on Ω × ℝ n N {\Omega\times\mathbb{R}^{nN}} and F strictly convex in p. Consider an n N × n N {nN\times nN} matrix A = ( A α β i j ) ∈ C 0 ( Ω ) {A=(A^{{ij}}_{\alpha\beta})\in C^{0}(\Omega)} satisfying (0.1) A α β i j ( x ) ξ α i ξ β j = A β α j i ( x ) ξ α i ξ β j ≥ λ | ξ | 2 , λ > 0 . A^{ij}_{\alpha\beta}(x)\xi^{i}_{\alpha}\xi^{j}_{\beta}=A^{ji}_{\beta\alpha}(x)% \xi^{i}_{\alpha}\xi^{j}_{\beta}\geq\lambda\lvert\xi\rvert^{2},\quad\lambda>0. Suppose that (0.2) lim | p | → ∞ 1 | p | ( D p F ( x , p ) - A ( x ) p ) = 0 , \displaystyle\lim_{\lvert p\rvert\to\infty}\frac{1}{\lvert p\rvert}(D_{p}F(x,p% )-A(x)p)=0, (0.3) - C 0 + c 0 | p | 2 ≤ F ( x , p ) ≤ C 0 ( 1 + | p | 2 ) , \displaystyle{-}C_{0}+c_{0}\lvert p\rvert^{2}\leq F(x,p)\leq C_{0}(1+\lvert p% \rvert^{2}), (0.4) | F p ( x , p ) - F p ( x , q ) | ≤ C 0 | p - q | , \displaystyle\lvert F_{p}(x,p)-F_{p}(x,q)\rvert\leq C_{0}\lvert p-q\rvert, (0.5) 〈 F p ( x , p ) - F p ( x , q ) , p - q 〉 ≥ c 0 | p - q | 2 \displaystyle\langle F_{p}(x,p)-F_{p}(x,q),p-q\rangle\geq c_{0}\lvert p-q% \rvert^{2} uniformly in x and with positive constants c 0 {c_{0}} and C 0 {C_{0}} . Consider the functional (0.6) J ( u ) := ∫ Ω F ( x , D u ( x ) ) 𝑑 x + ∫ Ω G ( x , u ) 𝑑 x , J(u):=\int_{\Omega}F(x,Du(x))\,dx+\int_{\Omega}G(x,u)\,dx, where G ( x , ⋅ ) ∈ C 1 ( ℝ N ) {G(x,\cdot\,)\in C^{1}(\mathbb{R}^{N})} for each x ∈ Ω {x\in\Omega} , G ( ⋅ , u ) {G(\,\cdot\,,u)} is measurable for each u ∈ ℝ N {u\in\mathbb{R}^{N}} , and (0.7) | G u ( x , u ) | ≤ C 0 ( 1 + | u | s ) \lvert G_{u}(x,u)\rvert\leq C_{0}(1+\lvert u\rvert^{s}) with s < n + 2 n - 2 {s<\frac{n+2}{n-2}} . Under these conditions, we shall show that if n > 2 {n>2} , then any weak solution u ∈ W 1 , 2 ( Ω , ℝ N ) {u\in W^{1,2}(\Omega,\mathbb{R}^{N})} of the Euler equations of J, i.e. ∑ α ∂ ∂ x α F p α i ( x , D u ) = G u i ( x , u ) , i = 1 , … , N , \sum_{\alpha}\frac{\partial}{\partial x^{\alpha}}F_{p^{i}_{\alpha}}(x,Du)=G_{u% ^{i}}(x,u),\quad i=1,\ldots,N, is Hölder continuous in the interior of Ω and under appropriate boundary conditions also Hölder continuous up to the boundary.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.