梯度应力作用下岩爆细观破裂机制

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2023-06-21 DOI:10.1007/s10064-023-03294-1
Xiqi Liu, Gang Wang, Yan Chang, Leibo Song, Kai Liu
{"title":"梯度应力作用下岩爆细观破裂机制","authors":"Xiqi Liu,&nbsp;Gang Wang,&nbsp;Yan Chang,&nbsp;Leibo Song,&nbsp;Kai Liu","doi":"10.1007/s10064-023-03294-1","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract   </h2><div><p>The tangential stress of surrounding rocks is large on tunnel walls. While from tunnel walls to the interior of surrounding rocks, the tangential stress declines and approaches the in situ stress in a gradient manner. To study the influences of stress gradient on the failure mechanism of rockbursts, a mesoscopic model was established based on the discrete element software particle flow code (PFC). The model was used to simulate rockburst disasters in the loading process of gradient stresses and analyze the failure modes and energy evolution process under different gradient stresses. Using the PFC platform, an acoustic emission (AE)–based simulation method at the mesoscopic scale was proposed according to the moment tensor theory to explore features of AE events, including the spatio-temporal distribution and fracture strength of the model during rockbursts. By analyzing the failure process, the increase in the applied stress gradient is found to accelerate the deterioration process of materials and promotes samples to fracture rapidly along dominant main cracks. The number of derivative cracks and the total number of cracks are significantly reduced, and the model shows a change from tensile failure to shear failure. As the applied stress gradient grows, the proportion of elastic energy storage in the model increases before a rockburst, and the rate of release of energy rises accordingly during the rockburst. The AE count at fracture points on the unloading face of the model is normally distributed with changes in the strength M, and the overall AE intensity is enhanced as the gradient increases.</p></div></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-023-03294-1.pdf","citationCount":"1","resultStr":"{\"title\":\"The mesoscopic fracture mechanism of rockbursts under gradient stresses\",\"authors\":\"Xiqi Liu,&nbsp;Gang Wang,&nbsp;Yan Chang,&nbsp;Leibo Song,&nbsp;Kai Liu\",\"doi\":\"10.1007/s10064-023-03294-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract   </h2><div><p>The tangential stress of surrounding rocks is large on tunnel walls. While from tunnel walls to the interior of surrounding rocks, the tangential stress declines and approaches the in situ stress in a gradient manner. To study the influences of stress gradient on the failure mechanism of rockbursts, a mesoscopic model was established based on the discrete element software particle flow code (PFC). The model was used to simulate rockburst disasters in the loading process of gradient stresses and analyze the failure modes and energy evolution process under different gradient stresses. Using the PFC platform, an acoustic emission (AE)–based simulation method at the mesoscopic scale was proposed according to the moment tensor theory to explore features of AE events, including the spatio-temporal distribution and fracture strength of the model during rockbursts. By analyzing the failure process, the increase in the applied stress gradient is found to accelerate the deterioration process of materials and promotes samples to fracture rapidly along dominant main cracks. The number of derivative cracks and the total number of cracks are significantly reduced, and the model shows a change from tensile failure to shear failure. As the applied stress gradient grows, the proportion of elastic energy storage in the model increases before a rockburst, and the rate of release of energy rises accordingly during the rockburst. The AE count at fracture points on the unloading face of the model is normally distributed with changes in the strength M, and the overall AE intensity is enhanced as the gradient increases.</p></div></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"82 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10064-023-03294-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-023-03294-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03294-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要巷道壁面围岩切向应力较大。而从巷道壁面到围岩内部,切向应力逐渐减小,并呈梯度向地应力逼近。为了研究应力梯度对岩爆破坏机制的影响,基于离散元软件particle flow code (PFC)建立了岩爆细观模型。利用该模型模拟了梯度应力加载过程中的岩爆灾害,分析了不同梯度应力作用下岩爆的破坏模式和能量演化过程。利用PFC平台,基于矩张量理论,提出了一种基于细观尺度的声发射(AE)模拟方法,探索岩爆过程中声发射事件的时空分布特征和模型断裂强度特征。通过对破坏过程的分析,发现外加应力梯度的增大加速了材料的劣化过程,促使试样沿主导主裂纹快速断裂。衍生裂纹数量和总裂纹数量均显著减少,模型由拉伸破坏向剪切破坏转变。随着施加应力梯度的增大,岩爆前模型中弹性蓄能比例增大,岩爆过程中能量释放速率相应增大。模型卸荷面各断裂点声发射计数随强度M的变化呈正态分布,整体声发射强度随梯度增大而增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The mesoscopic fracture mechanism of rockbursts under gradient stresses

Abstract   

The tangential stress of surrounding rocks is large on tunnel walls. While from tunnel walls to the interior of surrounding rocks, the tangential stress declines and approaches the in situ stress in a gradient manner. To study the influences of stress gradient on the failure mechanism of rockbursts, a mesoscopic model was established based on the discrete element software particle flow code (PFC). The model was used to simulate rockburst disasters in the loading process of gradient stresses and analyze the failure modes and energy evolution process under different gradient stresses. Using the PFC platform, an acoustic emission (AE)–based simulation method at the mesoscopic scale was proposed according to the moment tensor theory to explore features of AE events, including the spatio-temporal distribution and fracture strength of the model during rockbursts. By analyzing the failure process, the increase in the applied stress gradient is found to accelerate the deterioration process of materials and promotes samples to fracture rapidly along dominant main cracks. The number of derivative cracks and the total number of cracks are significantly reduced, and the model shows a change from tensile failure to shear failure. As the applied stress gradient grows, the proportion of elastic energy storage in the model increases before a rockburst, and the rate of release of energy rises accordingly during the rockburst. The AE count at fracture points on the unloading face of the model is normally distributed with changes in the strength M, and the overall AE intensity is enhanced as the gradient increases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Creep mechanism of landslide formation in rock with bedding and weak layers in Zezhou, Shanxi, China Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils Experimental investigation and fractional elastoplastic damage constitutive modelling of gray sandstone under loading disturbance Probabilistic landslide-generated impulse waves estimation in mountain reservoirs, a case study A novel data-driven hybrid intelligent prediction model for reservoir landslide displacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1