Sophie Rosenburg, Charlotte Lange, E. Jäkel, M. Schäfer, A. Ehrlich, M. Wendisch
{"title":"从航空成像光谱仪观测中反演北极海冰的雪层和融化池特性","authors":"Sophie Rosenburg, Charlotte Lange, E. Jäkel, M. Schäfer, A. Ehrlich, M. Wendisch","doi":"10.5194/amt-16-3915-2023","DOIUrl":null,"url":null,"abstract":"Abstract. A melting snow layer on Arctic sea ice, as a composition of ice, liquid water, and air, supplies meltwater that may trigger the formation of melt ponds. As a result, surface reflection properties are altered during the melting season and thereby may change the surface energy budget. To study these processes, sea ice surface\nreflection properties were derived from airborne measurements using imaging spectrometers. The data were collected over the closed and marginal Arctic sea ice zone north of Svalbard in May–June 2017. A retrieval approach based\non different absorption indices of pure ice and liquid water in the near-infrared spectral range was applied to the campaign data. The technique enabled us to retrieve the spatial distribution of the liquid water\nfraction of a snow layer and the effective radius of snow grains. For observations from three research flights, liquid water fractions between 6.5 % and 17.3 % and snow grain sizes between 129 and 414 µm were derived. In addition, the melt pond depth was\nretrieved based on an existing approach that isolates the dependence of a melt pond reflection spectrum on the pond depth by eliminating the reflection contribution of the pond ice bottom. The application of the approach to several case studies revealed a high variability of melt pond depth, with maximum depths of 0.33 m.\nThe results were discussed considering uncertainties arising from the airborne reflection measurements, the setup of radiative transfer simulations, and the retrieval method itself.\nOverall, the presented retrieval methods show the potential and the limitations of airborne measurements with imaging spectrometers to map the transition phase of the Arctic sea ice surface, examining the snow layer\ncomposition and melt pond depth.\n","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations\",\"authors\":\"Sophie Rosenburg, Charlotte Lange, E. Jäkel, M. Schäfer, A. Ehrlich, M. Wendisch\",\"doi\":\"10.5194/amt-16-3915-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. A melting snow layer on Arctic sea ice, as a composition of ice, liquid water, and air, supplies meltwater that may trigger the formation of melt ponds. As a result, surface reflection properties are altered during the melting season and thereby may change the surface energy budget. To study these processes, sea ice surface\\nreflection properties were derived from airborne measurements using imaging spectrometers. The data were collected over the closed and marginal Arctic sea ice zone north of Svalbard in May–June 2017. A retrieval approach based\\non different absorption indices of pure ice and liquid water in the near-infrared spectral range was applied to the campaign data. The technique enabled us to retrieve the spatial distribution of the liquid water\\nfraction of a snow layer and the effective radius of snow grains. For observations from three research flights, liquid water fractions between 6.5 % and 17.3 % and snow grain sizes between 129 and 414 µm were derived. In addition, the melt pond depth was\\nretrieved based on an existing approach that isolates the dependence of a melt pond reflection spectrum on the pond depth by eliminating the reflection contribution of the pond ice bottom. The application of the approach to several case studies revealed a high variability of melt pond depth, with maximum depths of 0.33 m.\\nThe results were discussed considering uncertainties arising from the airborne reflection measurements, the setup of radiative transfer simulations, and the retrieval method itself.\\nOverall, the presented retrieval methods show the potential and the limitations of airborne measurements with imaging spectrometers to map the transition phase of the Arctic sea ice surface, examining the snow layer\\ncomposition and melt pond depth.\\n\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-16-3915-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-16-3915-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Abstract. A melting snow layer on Arctic sea ice, as a composition of ice, liquid water, and air, supplies meltwater that may trigger the formation of melt ponds. As a result, surface reflection properties are altered during the melting season and thereby may change the surface energy budget. To study these processes, sea ice surface
reflection properties were derived from airborne measurements using imaging spectrometers. The data were collected over the closed and marginal Arctic sea ice zone north of Svalbard in May–June 2017. A retrieval approach based
on different absorption indices of pure ice and liquid water in the near-infrared spectral range was applied to the campaign data. The technique enabled us to retrieve the spatial distribution of the liquid water
fraction of a snow layer and the effective radius of snow grains. For observations from three research flights, liquid water fractions between 6.5 % and 17.3 % and snow grain sizes between 129 and 414 µm were derived. In addition, the melt pond depth was
retrieved based on an existing approach that isolates the dependence of a melt pond reflection spectrum on the pond depth by eliminating the reflection contribution of the pond ice bottom. The application of the approach to several case studies revealed a high variability of melt pond depth, with maximum depths of 0.33 m.
The results were discussed considering uncertainties arising from the airborne reflection measurements, the setup of radiative transfer simulations, and the retrieval method itself.
Overall, the presented retrieval methods show the potential and the limitations of airborne measurements with imaging spectrometers to map the transition phase of the Arctic sea ice surface, examining the snow layer
composition and melt pond depth.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.