Shuangna Jin, Wuming Zhang, Jie Shao, P. Wan, Shun Cheng, Shangshu Cai, G. Yan
{"title":"基于地面的激光雷达点云估算落叶松树干、树冠和枝条的生长","authors":"Shuangna Jin, Wuming Zhang, Jie Shao, P. Wan, Shun Cheng, Shangshu Cai, G. Yan","doi":"10.21203/rs.3.rs-910503/v1","DOIUrl":null,"url":null,"abstract":"\n BackgroundTree growth is an important indicator of forest health and can reflect changes in forest structure. Traditional tree growth estimates use easy-to-measure parameters (e.g., tree height, diameter at breast height (DBH), and crown diameter) obtained via forest in situ measurements, which are labor-intensive and time-consuming to perform and cannot easily describe the changes throughout the whole growth period of a tree. The combination of Terrestrial Laser Scanning (TLS) and Quantitative Structure Modelling (QSM) can accurately estimate tree structural parameters nondestructively and has the potential to estimate tree growth. Therefore, this paper estimates tree growth according to the stem-, crown-, and branch-level attributes observed by ground-based LiDAR point clouds. Compared with conventional methods, this paper used tree height, DBH, stem volume, crown diameter, crown volume and first-order branch volume to estimate the growth of 55-year-old larch trees in Saihanba at the stem, crown and branch levels, respectively. ResultsThe experimental results showed that the absolute growth of the first-order branch volume was equivalent to that of the stems, which highlights the importance of branches in the study of tree growth. For 55-year-old larch, tree growth is mainly reflected in the growth of the crown, i.e., the growth of branches. Compared to one-dimensional parameters (tree height, DBH and crown diameter), the growth of three-dimensional parameters (crown, stem and first-order branch volumes) was more obvious. ConclusionsFor 55-year-old larch, three-dimensional tree parameters can more effectively describe tree growth, and the absolute growth of the first-order branch volume is close to the stem volume. In addition, it is necessary to estimate tree growth at different levels.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of Larch Growth at the Stem, Crown and Branch Levels Using Ground-based LiDAR Point Cloud\",\"authors\":\"Shuangna Jin, Wuming Zhang, Jie Shao, P. Wan, Shun Cheng, Shangshu Cai, G. Yan\",\"doi\":\"10.21203/rs.3.rs-910503/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n BackgroundTree growth is an important indicator of forest health and can reflect changes in forest structure. Traditional tree growth estimates use easy-to-measure parameters (e.g., tree height, diameter at breast height (DBH), and crown diameter) obtained via forest in situ measurements, which are labor-intensive and time-consuming to perform and cannot easily describe the changes throughout the whole growth period of a tree. The combination of Terrestrial Laser Scanning (TLS) and Quantitative Structure Modelling (QSM) can accurately estimate tree structural parameters nondestructively and has the potential to estimate tree growth. Therefore, this paper estimates tree growth according to the stem-, crown-, and branch-level attributes observed by ground-based LiDAR point clouds. Compared with conventional methods, this paper used tree height, DBH, stem volume, crown diameter, crown volume and first-order branch volume to estimate the growth of 55-year-old larch trees in Saihanba at the stem, crown and branch levels, respectively. ResultsThe experimental results showed that the absolute growth of the first-order branch volume was equivalent to that of the stems, which highlights the importance of branches in the study of tree growth. For 55-year-old larch, tree growth is mainly reflected in the growth of the crown, i.e., the growth of branches. Compared to one-dimensional parameters (tree height, DBH and crown diameter), the growth of three-dimensional parameters (crown, stem and first-order branch volumes) was more obvious. ConclusionsFor 55-year-old larch, three-dimensional tree parameters can more effectively describe tree growth, and the absolute growth of the first-order branch volume is close to the stem volume. In addition, it is necessary to estimate tree growth at different levels.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-910503/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-910503/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Larch Growth at the Stem, Crown and Branch Levels Using Ground-based LiDAR Point Cloud
BackgroundTree growth is an important indicator of forest health and can reflect changes in forest structure. Traditional tree growth estimates use easy-to-measure parameters (e.g., tree height, diameter at breast height (DBH), and crown diameter) obtained via forest in situ measurements, which are labor-intensive and time-consuming to perform and cannot easily describe the changes throughout the whole growth period of a tree. The combination of Terrestrial Laser Scanning (TLS) and Quantitative Structure Modelling (QSM) can accurately estimate tree structural parameters nondestructively and has the potential to estimate tree growth. Therefore, this paper estimates tree growth according to the stem-, crown-, and branch-level attributes observed by ground-based LiDAR point clouds. Compared with conventional methods, this paper used tree height, DBH, stem volume, crown diameter, crown volume and first-order branch volume to estimate the growth of 55-year-old larch trees in Saihanba at the stem, crown and branch levels, respectively. ResultsThe experimental results showed that the absolute growth of the first-order branch volume was equivalent to that of the stems, which highlights the importance of branches in the study of tree growth. For 55-year-old larch, tree growth is mainly reflected in the growth of the crown, i.e., the growth of branches. Compared to one-dimensional parameters (tree height, DBH and crown diameter), the growth of three-dimensional parameters (crown, stem and first-order branch volumes) was more obvious. ConclusionsFor 55-year-old larch, three-dimensional tree parameters can more effectively describe tree growth, and the absolute growth of the first-order branch volume is close to the stem volume. In addition, it is necessary to estimate tree growth at different levels.