选择激光熔化法和常规铸造法制备Inconel 718合金的显微组织和拉伸性能

Minglin He, Y. Ni, Shuai Wang
{"title":"选择激光熔化法和常规铸造法制备Inconel 718合金的显微组织和拉伸性能","authors":"Minglin He, Y. Ni, Shuai Wang","doi":"10.1142/s2424913021410034","DOIUrl":null,"url":null,"abstract":"In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the microstructure and tensile properties of Inconel 718 alloy fabricated by selective laser melting and conventional casting\",\"authors\":\"Minglin He, Y. Ni, Shuai Wang\",\"doi\":\"10.1142/s2424913021410034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.\",\"PeriodicalId\":36070,\"journal\":{\"name\":\"Journal of Micromechanics and Molecular Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424913021410034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021410034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

本文采用多尺度表征方法研究了选择性激光熔化(SLM)和常规铸造工艺制备的Inconel 718合金的显微组织和拉伸性能。结果表明:印态Inconel 718合金的主要特征是含有亚微米大小的细胞结构单元的柱状晶粒结构;在细胞结构边界处,发现了高密度的位错缠结、Nb/Mo原子的偏析和纳米Laves相。同时,我们还观察到在细胞结构内部存在位错堆积和层错。相比之下,铸态Inconel 718合金的晶粒和Laves相都要粗得多。在晶粒中局部观察到离散位错、位错缠结和[公式:见文本]。拉伸结果表明,与铸态合金相比,打印态的Inconel 718合金具有更高的强度和更低的延伸率。在实验结果的基础上,讨论了细胞结构的形成机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the microstructure and tensile properties of Inconel 718 alloy fabricated by selective laser melting and conventional casting
In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
期刊最新文献
Computational study of substituent effects on Molecular structure, vibrational and electronic properties of Fluorene molecule using density functional theory. Thermodynamical applications in Teleparallel Tachyonic model Topological characterization of three classes of complex networks and their graphical representation and Analysis A Computational Study on Buckling Strength of Pressurized Submarine Pressure Hull Structures under Combined Static Load and Asymmetric Impact Load Analyzing Polycyclic Aromatic Hydrocarbons using Topological Indices and QSPR Analysis to Reveal Molecular Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1