使用深度门控专家混合的高效反射捕获

IF 4.7 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING IEEE Transactions on Visualization and Computer Graphics Pub Date : 2022-03-29 DOI:10.48550/arXiv.2203.15258
Xiaohe Ma, Ya-Qi Yu, Hongzhi Wu, Kun Zhou
{"title":"使用深度门控专家混合的高效反射捕获","authors":"Xiaohe Ma, Ya-Qi Yu, Hongzhi Wu, Kun Zhou","doi":"10.48550/arXiv.2203.15258","DOIUrl":null,"url":null,"abstract":"We present a novel framework to efficiently acquire anisotropic reflectance in a pixel-independent fashion, using a deep gated mixture-of-experts. While existing work employs a unified network to handle all possible input, our network automatically learns to condition on the input for enhanced reconstruction. We train a gating module that takes photometric measurements as input and selects one out of a number of specialized decoders for reflectance reconstruction, essentially trading generality for quality. A common pre-trained latent-transform module is also appended to each decoder, to offset the burden of the increased number of decoders. In addition, the illumination conditions during acquisition can be jointly optimized. The effectiveness of our framework is validated on a wide variety of challenging near-planar samples with a lightstage. Compared with the state-of-the-art technique, our quality is improved with the same number of input images, and our input image number can be reduced to about 1/3 for equal-quality results. We further generalize the framework to enhance a state-of-the-art technique on non-planar reflectance scanning.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Reflectance Capture with a Deep Gated Mixture-of-Experts\",\"authors\":\"Xiaohe Ma, Ya-Qi Yu, Hongzhi Wu, Kun Zhou\",\"doi\":\"10.48550/arXiv.2203.15258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework to efficiently acquire anisotropic reflectance in a pixel-independent fashion, using a deep gated mixture-of-experts. While existing work employs a unified network to handle all possible input, our network automatically learns to condition on the input for enhanced reconstruction. We train a gating module that takes photometric measurements as input and selects one out of a number of specialized decoders for reflectance reconstruction, essentially trading generality for quality. A common pre-trained latent-transform module is also appended to each decoder, to offset the burden of the increased number of decoders. In addition, the illumination conditions during acquisition can be jointly optimized. The effectiveness of our framework is validated on a wide variety of challenging near-planar samples with a lightstage. Compared with the state-of-the-art technique, our quality is improved with the same number of input images, and our input image number can be reduced to about 1/3 for equal-quality results. We further generalize the framework to enhance a state-of-the-art technique on non-planar reflectance scanning.\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.15258\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.15258","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的框架,利用深度门控混合专家,以像素无关的方式有效地获取各向异性反射率。现有的工作采用统一的网络来处理所有可能的输入,而我们的网络会自动学习对输入进行条件调整以增强重建。我们训练了一个门控模块,它将光度测量作为输入,并从许多专门的解码器中选择一个用于反射率重建,本质上是为了质量而交换通用性。每个解码器还附加了一个通用的预训练的潜在变换模块,以抵消解码器数量增加带来的负担。此外,还可以对采集过程中的照明条件进行联合优化。我们的框架的有效性在各种具有挑战性的近平面样品和光舞台上得到了验证。与最先进的技术相比,在相同数量的输入图像的情况下,我们的质量得到了提高,并且我们的输入图像数量可以减少到1/3左右,从而获得相同质量的结果。我们进一步推广了该框架,以增强非平面反射扫描的最新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Reflectance Capture with a Deep Gated Mixture-of-Experts
We present a novel framework to efficiently acquire anisotropic reflectance in a pixel-independent fashion, using a deep gated mixture-of-experts. While existing work employs a unified network to handle all possible input, our network automatically learns to condition on the input for enhanced reconstruction. We train a gating module that takes photometric measurements as input and selects one out of a number of specialized decoders for reflectance reconstruction, essentially trading generality for quality. A common pre-trained latent-transform module is also appended to each decoder, to offset the burden of the increased number of decoders. In addition, the illumination conditions during acquisition can be jointly optimized. The effectiveness of our framework is validated on a wide variety of challenging near-planar samples with a lightstage. Compared with the state-of-the-art technique, our quality is improved with the same number of input images, and our input image number can be reduced to about 1/3 for equal-quality results. We further generalize the framework to enhance a state-of-the-art technique on non-planar reflectance scanning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
期刊最新文献
EventPointMesh: Human Mesh Recovery Solely From Event Point Clouds A Review and Analysis of Evaluation Practices in VIS Domain Applications HINTs: Sensemaking on large collections of documents with Hypergraph visualization and INTelligent agents RSVP for VPSA : A Meta Design Study on Rapid Suggestive Visualization Prototyping for Visual Parameter Space Analysis 3D Shape Completion on Unseen Categories: A Weakly-Supervised Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1