运用情绪分析预测公投民意的可行性研究

Q2 Social Sciences Reference Librarian Pub Date : 2019-03-27 DOI:10.1080/02763877.2019.1595260
Iana Sabatovych
{"title":"运用情绪分析预测公投民意的可行性研究","authors":"Iana Sabatovych","doi":"10.1080/02763877.2019.1595260","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study explored the potential of using sentiment analysis of tweets to predict referendum choices (Brexit). The feasibility of using StreamKM++ in the massive online analysis framework was examined over five categories, ranging from strongly agree to strongly disagree (to exit). A Naïve Bayes classifier was used to classify people’s opinions according to these categories. The prediction model resulted in high accuracy (97.98%), making it possible to use it in predicting opinions about public events and issues. The findings from this study may help practitioners, and policymakers understand the importance of sentiment analysis of social media in assessing public opinion and, accordingly, making certain voting predictions.","PeriodicalId":35386,"journal":{"name":"Reference Librarian","volume":"60 1","pages":"202 - 211"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02763877.2019.1595260","citationCount":"4","resultStr":"{\"title\":\"Use of Sentiment Analysis for Predicting Public Opinion on Referendum: A Feasibility Study\",\"authors\":\"Iana Sabatovych\",\"doi\":\"10.1080/02763877.2019.1595260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study explored the potential of using sentiment analysis of tweets to predict referendum choices (Brexit). The feasibility of using StreamKM++ in the massive online analysis framework was examined over five categories, ranging from strongly agree to strongly disagree (to exit). A Naïve Bayes classifier was used to classify people’s opinions according to these categories. The prediction model resulted in high accuracy (97.98%), making it possible to use it in predicting opinions about public events and issues. The findings from this study may help practitioners, and policymakers understand the importance of sentiment analysis of social media in assessing public opinion and, accordingly, making certain voting predictions.\",\"PeriodicalId\":35386,\"journal\":{\"name\":\"Reference Librarian\",\"volume\":\"60 1\",\"pages\":\"202 - 211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/02763877.2019.1595260\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reference Librarian\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02763877.2019.1595260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reference Librarian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02763877.2019.1595260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4

摘要

摘要本研究探讨了使用推特情绪分析预测公投选择(英国脱欧)的潜力。在大规模在线分析框架中使用StreamKM++的可行性在五个类别中进行了审查,从强烈同意到强烈反对(到退出)。使用朴素贝叶斯分类器根据这些类别对人们的意见进行分类。该预测模型具有较高的准确率(97.98%),使其能够用于预测公众事件和问题的意见。这项研究的发现可能有助于从业者和政策制定者理解社交媒体情绪分析在评估公众舆论以及做出某些投票预测方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Sentiment Analysis for Predicting Public Opinion on Referendum: A Feasibility Study
ABSTRACT This study explored the potential of using sentiment analysis of tweets to predict referendum choices (Brexit). The feasibility of using StreamKM++ in the massive online analysis framework was examined over five categories, ranging from strongly agree to strongly disagree (to exit). A Naïve Bayes classifier was used to classify people’s opinions according to these categories. The prediction model resulted in high accuracy (97.98%), making it possible to use it in predicting opinions about public events and issues. The findings from this study may help practitioners, and policymakers understand the importance of sentiment analysis of social media in assessing public opinion and, accordingly, making certain voting predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reference Librarian
Reference Librarian Social Sciences-Library and Information Sciences
CiteScore
2.10
自引率
0.00%
发文量
6
期刊介绍: The Reference Librarian aims to be a standard resource for everyone interested in the practice of reference work, from library and information science students to practicing reference librarians and full-time researchers. It enables readers to keep up with the changing face of reference, presenting new ideas for consideration. The Reference Librarian publishes articles about all aspects of the reference process, some research-based and some applied. Current trends and traditional questions are equally welcome. Many articles concern new electronic tools and resources, best practices in instruction and reference service, analysis of marketing of services, and effectiveness studies.
期刊最新文献
PAUSE for Your Health: A New End-User Tool for Evaluating Consumer Health News and Online Resources The Future of Libraries Did Not Happen–But Don’t Let History Repeat Itself At What Cost? : Missouri Librarians and the Struggle for Intellectual Freedom Robots and Human Librarians for Delivering Library Services to Patrons Improving a Library FAQ: Assessment and Reflection of the First Year’s Use
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1