{"title":"模型不确定性下结构故障检测的域自适应","authors":"A. Ozdagli, X. Koutsoukos","doi":"10.36001/ijphm.2021.v12i2.2948","DOIUrl":null,"url":null,"abstract":"In the last decade, the interest in machine learning (ML) has grown significantly within the structural health monitoring (SHM) community. Traditional supervised ML approaches for detecting faults assume that the training and test data come from similar distributions. However, real-world applications, where an ML model is trained, for example, on numerical simulation data and tested on experimental data, are deemed to fail in detecting the damage. The deterioration in the prediction performance is mainly related to the fact that the numerical and experimental data are collected under different conditions and they do not share the same underlying features. This paper proposes a domain adaptation approach for ML-based damage detection and localization problems where the classifier has access to the labeled training (source) and unlabeled test (target) data, but the source and target domains are statistically different. The proposed domain adaptation method seeks to form a feature space that is capable of representing both source and target domains by implementing a domain-adversarial neural network. This neural network uses H-divergence criteria to minimize the discrepancy between the source and target domain in a latent feature space. To evaluate the performance, we present two case studies where we design a neural network model for classifying the health condition of a variety of systems. The effectiveness of the domain adaptation is shown by computing the classification accuracy of the unlabeled target data with and without domain adaptation. Furthermore, the performance gain of the domain adaptation over a well-known transfer knowledge approach called Transfer Component Analysis is also demonstrated. Overall, the results demonstrate that the domain adaption is a valid approach for damage detection applications where access to labeled experimental data is limited.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Domain Adaptation for Structural Fault Detection under Model Uncertainty\",\"authors\":\"A. Ozdagli, X. Koutsoukos\",\"doi\":\"10.36001/ijphm.2021.v12i2.2948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, the interest in machine learning (ML) has grown significantly within the structural health monitoring (SHM) community. Traditional supervised ML approaches for detecting faults assume that the training and test data come from similar distributions. However, real-world applications, where an ML model is trained, for example, on numerical simulation data and tested on experimental data, are deemed to fail in detecting the damage. The deterioration in the prediction performance is mainly related to the fact that the numerical and experimental data are collected under different conditions and they do not share the same underlying features. This paper proposes a domain adaptation approach for ML-based damage detection and localization problems where the classifier has access to the labeled training (source) and unlabeled test (target) data, but the source and target domains are statistically different. The proposed domain adaptation method seeks to form a feature space that is capable of representing both source and target domains by implementing a domain-adversarial neural network. This neural network uses H-divergence criteria to minimize the discrepancy between the source and target domain in a latent feature space. To evaluate the performance, we present two case studies where we design a neural network model for classifying the health condition of a variety of systems. The effectiveness of the domain adaptation is shown by computing the classification accuracy of the unlabeled target data with and without domain adaptation. Furthermore, the performance gain of the domain adaptation over a well-known transfer knowledge approach called Transfer Component Analysis is also demonstrated. Overall, the results demonstrate that the domain adaption is a valid approach for damage detection applications where access to labeled experimental data is limited.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2021.v12i2.2948\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2021.v12i2.2948","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Domain Adaptation for Structural Fault Detection under Model Uncertainty
In the last decade, the interest in machine learning (ML) has grown significantly within the structural health monitoring (SHM) community. Traditional supervised ML approaches for detecting faults assume that the training and test data come from similar distributions. However, real-world applications, where an ML model is trained, for example, on numerical simulation data and tested on experimental data, are deemed to fail in detecting the damage. The deterioration in the prediction performance is mainly related to the fact that the numerical and experimental data are collected under different conditions and they do not share the same underlying features. This paper proposes a domain adaptation approach for ML-based damage detection and localization problems where the classifier has access to the labeled training (source) and unlabeled test (target) data, but the source and target domains are statistically different. The proposed domain adaptation method seeks to form a feature space that is capable of representing both source and target domains by implementing a domain-adversarial neural network. This neural network uses H-divergence criteria to minimize the discrepancy between the source and target domain in a latent feature space. To evaluate the performance, we present two case studies where we design a neural network model for classifying the health condition of a variety of systems. The effectiveness of the domain adaptation is shown by computing the classification accuracy of the unlabeled target data with and without domain adaptation. Furthermore, the performance gain of the domain adaptation over a well-known transfer knowledge approach called Transfer Component Analysis is also demonstrated. Overall, the results demonstrate that the domain adaption is a valid approach for damage detection applications where access to labeled experimental data is limited.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.