COPD的遗传学。

IF 15.7 1区 医学 Q1 PHYSIOLOGY Annual review of physiology Pub Date : 2019-11-15 DOI:10.1146/ANNUREV-PHYSIOL-021317-121224
E. Silverman
{"title":"COPD的遗传学。","authors":"E. Silverman","doi":"10.1146/ANNUREV-PHYSIOL-021317-121224","DOIUrl":null,"url":null,"abstract":"Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-PHYSIOL-021317-121224","citationCount":"67","resultStr":"{\"title\":\"Genetics of COPD.\",\"authors\":\"E. Silverman\",\"doi\":\"10.1146/ANNUREV-PHYSIOL-021317-121224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8196,\"journal\":{\"name\":\"Annual review of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-PHYSIOL-021317-121224\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-PHYSIOL-021317-121224\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/ANNUREV-PHYSIOL-021317-121224","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 67

摘要

尽管吸烟对慢性阻塞性肺病(COPD)的风险有很大影响,但遗传因素也是COPD的重要决定因素。除了孟德尔综合征,如α-1抗胰蛋白酶缺乏症,在全基因组关联研究中还发现了许多影响COPD易感性的基因组区域。类似地,已经发现了与COPD相关表型相关的多个基因组区域,如定量肺气肿测量。识别这些关联区域内的功能变体和关键基因仍然是一个重大挑战。然而,新发现的COPD易感基因已经为COPD的发病机制提供了新的见解。利用这些基因发现的基于网络的方法有可能帮助解码COPD的复杂遗传结构。《生理学年度评论》第82卷预计最终在线出版日期为2020年2月10日。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetics of COPD.
Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD. Expected final online publication date for the Annual Review of Physiology, Volume 82 is February 10, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
期刊最新文献
From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals. A Mechanistic Rationale for Incretin-Based Therapeutics in the Management of Obesity. The Physiology of Enteric Glia. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Epithelial Na+ Channels, Immune Cells, and Salt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1