{"title":"晚古生代克拉通汇:美国阿纳达科盆地的远端沉积物来自多个源区","authors":"B. Kushner, G. Soreghan, M. Soreghan","doi":"10.1130/ges02489.1","DOIUrl":null,"url":null,"abstract":"The Anadarko Basin (south-central USA) is the deepest basin on the North American craton and occupies a region largely surrounded by major, late Paleozoic plate-margin (Marathon-Ouachita-Appalachian) and intraplate (Ancestral Rocky Mountains) orogenic systems, albeit a distal arm of the latter. The Anadarko Basin hosts an exceptionally voluminous record of Pennsylvanian strata, and much of this fill has been attributed to erosion of the adjacent Wichita uplift—composed of granitic and rhyolitic rocks of Cambrian age—separated from the basin by a fault zone exhibiting 12 km of vertical separation. This work incorporates thin-section petrography (102 samples) and U-Pb detrital zircon geochronology of sandstone samples (12 samples) from core and outcrop of the Middle Pennsylvanian Red Fork Sandstone (and equivalents) as well as slightly younger Upper Pennsylvanian units (Tonkawa, Chelsea, and Gypsy sandstones) in order to interpret drainage pathways and evolution of those pathways toward and into the Anadarko Basin (Oklahoma) and evaluate the relative importance of the major provenance regions.\n Our petrographic analysis indicates sandstones with arkosic compositions are limited to the region immediately adjacent to (north of) the Wichita uplift. All remaining samples, which reflect the vast bulk of sediment in the depocenter, including sediment on the northern and eastern Anadarko shelf, are litharenites. Analysis of kernel density plots of the U-Pb ages of detrital zircons together with multidimensional scaling analysis of the Middle Pennsylvanian samples indicate three groups of similar provenance: (1) samples dominated by Cambrian ages from locations directly adjacent to the Wichita uplift; (2) samples dominated by Neoproterozoic ages from locations along the northern shelf of the Anadarko Basin; and (3) samples dominated by Mesoproterozoic ages from locations along the eastern Anadarko shelf and the basin center. These samples are spatially discrete, indicating partitioning of drainage networks during the Middle Pennsylvanian, with two continental-scale fluvial systems entering the Anadarko Basin from the north (transversely) and east (axially). The lack of Cambrian ages in the depocenter and (northern) shelf samples indicate that the Wichita uplift supplied only limited sediment to the basin; sediment derived from the uplift was trapped in fringing fans directly adjacent to the uplift. In contrast to the patterns exhibited by the Middle Pennsylvanian samples, Upper Pennsylvanian samples exhibit more uniform U-Pb ages across the basin. This indicates the relatively rapid evolution of the Appalachian-derived northerly and easterly drainages into an integrated system that flowed axially across the (overfilled) mid-continent basins to the ultimate continental sink in the Anadarko Basin.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Paleozoic cratonal sink: Distally sourced sediment filled the Anadarko Basin (USA) from multiple source regions\",\"authors\":\"B. Kushner, G. Soreghan, M. Soreghan\",\"doi\":\"10.1130/ges02489.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Anadarko Basin (south-central USA) is the deepest basin on the North American craton and occupies a region largely surrounded by major, late Paleozoic plate-margin (Marathon-Ouachita-Appalachian) and intraplate (Ancestral Rocky Mountains) orogenic systems, albeit a distal arm of the latter. The Anadarko Basin hosts an exceptionally voluminous record of Pennsylvanian strata, and much of this fill has been attributed to erosion of the adjacent Wichita uplift—composed of granitic and rhyolitic rocks of Cambrian age—separated from the basin by a fault zone exhibiting 12 km of vertical separation. This work incorporates thin-section petrography (102 samples) and U-Pb detrital zircon geochronology of sandstone samples (12 samples) from core and outcrop of the Middle Pennsylvanian Red Fork Sandstone (and equivalents) as well as slightly younger Upper Pennsylvanian units (Tonkawa, Chelsea, and Gypsy sandstones) in order to interpret drainage pathways and evolution of those pathways toward and into the Anadarko Basin (Oklahoma) and evaluate the relative importance of the major provenance regions.\\n Our petrographic analysis indicates sandstones with arkosic compositions are limited to the region immediately adjacent to (north of) the Wichita uplift. All remaining samples, which reflect the vast bulk of sediment in the depocenter, including sediment on the northern and eastern Anadarko shelf, are litharenites. Analysis of kernel density plots of the U-Pb ages of detrital zircons together with multidimensional scaling analysis of the Middle Pennsylvanian samples indicate three groups of similar provenance: (1) samples dominated by Cambrian ages from locations directly adjacent to the Wichita uplift; (2) samples dominated by Neoproterozoic ages from locations along the northern shelf of the Anadarko Basin; and (3) samples dominated by Mesoproterozoic ages from locations along the eastern Anadarko shelf and the basin center. These samples are spatially discrete, indicating partitioning of drainage networks during the Middle Pennsylvanian, with two continental-scale fluvial systems entering the Anadarko Basin from the north (transversely) and east (axially). The lack of Cambrian ages in the depocenter and (northern) shelf samples indicate that the Wichita uplift supplied only limited sediment to the basin; sediment derived from the uplift was trapped in fringing fans directly adjacent to the uplift. In contrast to the patterns exhibited by the Middle Pennsylvanian samples, Upper Pennsylvanian samples exhibit more uniform U-Pb ages across the basin. This indicates the relatively rapid evolution of the Appalachian-derived northerly and easterly drainages into an integrated system that flowed axially across the (overfilled) mid-continent basins to the ultimate continental sink in the Anadarko Basin.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02489.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02489.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Late Paleozoic cratonal sink: Distally sourced sediment filled the Anadarko Basin (USA) from multiple source regions
The Anadarko Basin (south-central USA) is the deepest basin on the North American craton and occupies a region largely surrounded by major, late Paleozoic plate-margin (Marathon-Ouachita-Appalachian) and intraplate (Ancestral Rocky Mountains) orogenic systems, albeit a distal arm of the latter. The Anadarko Basin hosts an exceptionally voluminous record of Pennsylvanian strata, and much of this fill has been attributed to erosion of the adjacent Wichita uplift—composed of granitic and rhyolitic rocks of Cambrian age—separated from the basin by a fault zone exhibiting 12 km of vertical separation. This work incorporates thin-section petrography (102 samples) and U-Pb detrital zircon geochronology of sandstone samples (12 samples) from core and outcrop of the Middle Pennsylvanian Red Fork Sandstone (and equivalents) as well as slightly younger Upper Pennsylvanian units (Tonkawa, Chelsea, and Gypsy sandstones) in order to interpret drainage pathways and evolution of those pathways toward and into the Anadarko Basin (Oklahoma) and evaluate the relative importance of the major provenance regions.
Our petrographic analysis indicates sandstones with arkosic compositions are limited to the region immediately adjacent to (north of) the Wichita uplift. All remaining samples, which reflect the vast bulk of sediment in the depocenter, including sediment on the northern and eastern Anadarko shelf, are litharenites. Analysis of kernel density plots of the U-Pb ages of detrital zircons together with multidimensional scaling analysis of the Middle Pennsylvanian samples indicate three groups of similar provenance: (1) samples dominated by Cambrian ages from locations directly adjacent to the Wichita uplift; (2) samples dominated by Neoproterozoic ages from locations along the northern shelf of the Anadarko Basin; and (3) samples dominated by Mesoproterozoic ages from locations along the eastern Anadarko shelf and the basin center. These samples are spatially discrete, indicating partitioning of drainage networks during the Middle Pennsylvanian, with two continental-scale fluvial systems entering the Anadarko Basin from the north (transversely) and east (axially). The lack of Cambrian ages in the depocenter and (northern) shelf samples indicate that the Wichita uplift supplied only limited sediment to the basin; sediment derived from the uplift was trapped in fringing fans directly adjacent to the uplift. In contrast to the patterns exhibited by the Middle Pennsylvanian samples, Upper Pennsylvanian samples exhibit more uniform U-Pb ages across the basin. This indicates the relatively rapid evolution of the Appalachian-derived northerly and easterly drainages into an integrated system that flowed axially across the (overfilled) mid-continent basins to the ultimate continental sink in the Anadarko Basin.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.