自相关误差回归的Gini估计

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2022-03-24 DOI:10.1515/snde-2020-0134
Ndéné Ka, Stéphane Mussard
{"title":"自相关误差回归的Gini估计","authors":"Ndéné Ka, Stéphane Mussard","doi":"10.1515/snde-2020-0134","DOIUrl":null,"url":null,"abstract":"Abstract The widely used Prais–Winsten technique for estimating parameters of linear regression model with serial correlation is sensitive to outliers. In this paper, an alternative method based on Gini mean difference (GMD) is proposed. A Monte Carlo simulation is used to show that the Gini estimator is more robust than the general least squares one when the data are contaminated by outliers.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"83 - 95"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Gini estimator for regression with autocorrelated errors\",\"authors\":\"Ndéné Ka, Stéphane Mussard\",\"doi\":\"10.1515/snde-2020-0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The widely used Prais–Winsten technique for estimating parameters of linear regression model with serial correlation is sensitive to outliers. In this paper, an alternative method based on Gini mean difference (GMD) is proposed. A Monte Carlo simulation is used to show that the Gini estimator is more robust than the general least squares one when the data are contaminated by outliers.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"27 1\",\"pages\":\"83 - 95\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2020-0134\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0134","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要广泛应用于序列相关线性回归模型参数估计的Prais-Winsten技术对异常值非常敏感。本文提出了一种基于基尼均值差(GMD)的替代方法。蒙特卡罗模拟表明,当数据被异常值污染时,基尼估计器比一般的最小二乘估计器更稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Gini estimator for regression with autocorrelated errors
Abstract The widely used Prais–Winsten technique for estimating parameters of linear regression model with serial correlation is sensitive to outliers. In this paper, an alternative method based on Gini mean difference (GMD) is proposed. A Monte Carlo simulation is used to show that the Gini estimator is more robust than the general least squares one when the data are contaminated by outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1