{"title":"物候分段模型比全季模型更有利于基于遥感数据估算冬小麦产量","authors":"Xin Huang, Wenquan Zhu, Cenliang Zhao, Zhiying Xie, Hui Zhang","doi":"10.1080/22797254.2022.2073916","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most of the existing remote sensing-based yield estimation methods adopt the mean or cumulative value of meteorological factors within the whole growing season, which may ignore the impact of adverse meteorological conditions on the growth of winter wheat in a certain phenological period. In this study, we distinguished the developmental progression of winter wheat as three phenological periods. In each phenological period, the vegetation indices and meteorological factors were optimized. Then the accuracy and spatiotemporal transferability of the phenological piecewise modelling was compared with that of the whole-season modelling based on four regression methods (i.e. multiple linear regression, artificial neural network, support vector regression and random forest). The results showed that the optimal combinations of variables for the whole-season modelling and the phenological piecewise modelling were different. Compared with the whole-season models, the R2 for the phenological piecewise models improved by 1.4% to 7.6%, the root mean square error (RMSE) decreased by 1.1% to 8.2% among four regression methods . In addition, compared with the whole-season models, the spatiotemporal transferability for the phenological piecewise models was generally better. The accuracies after spatiotemporal transfer for the phenological piecewise models were still higher than that for the whole-season models.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"55 1","pages":"338 - 352"},"PeriodicalIF":3.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenological piecewise modelling is more conducive than whole-season modelling to winter wheat yield estimation based on remote sensing data\",\"authors\":\"Xin Huang, Wenquan Zhu, Cenliang Zhao, Zhiying Xie, Hui Zhang\",\"doi\":\"10.1080/22797254.2022.2073916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Most of the existing remote sensing-based yield estimation methods adopt the mean or cumulative value of meteorological factors within the whole growing season, which may ignore the impact of adverse meteorological conditions on the growth of winter wheat in a certain phenological period. In this study, we distinguished the developmental progression of winter wheat as three phenological periods. In each phenological period, the vegetation indices and meteorological factors were optimized. Then the accuracy and spatiotemporal transferability of the phenological piecewise modelling was compared with that of the whole-season modelling based on four regression methods (i.e. multiple linear regression, artificial neural network, support vector regression and random forest). The results showed that the optimal combinations of variables for the whole-season modelling and the phenological piecewise modelling were different. Compared with the whole-season models, the R2 for the phenological piecewise models improved by 1.4% to 7.6%, the root mean square error (RMSE) decreased by 1.1% to 8.2% among four regression methods . In addition, compared with the whole-season models, the spatiotemporal transferability for the phenological piecewise models was generally better. The accuracies after spatiotemporal transfer for the phenological piecewise models were still higher than that for the whole-season models.\",\"PeriodicalId\":49077,\"journal\":{\"name\":\"European Journal of Remote Sensing\",\"volume\":\"55 1\",\"pages\":\"338 - 352\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/22797254.2022.2073916\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2022.2073916","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Phenological piecewise modelling is more conducive than whole-season modelling to winter wheat yield estimation based on remote sensing data
ABSTRACT Most of the existing remote sensing-based yield estimation methods adopt the mean or cumulative value of meteorological factors within the whole growing season, which may ignore the impact of adverse meteorological conditions on the growth of winter wheat in a certain phenological period. In this study, we distinguished the developmental progression of winter wheat as three phenological periods. In each phenological period, the vegetation indices and meteorological factors were optimized. Then the accuracy and spatiotemporal transferability of the phenological piecewise modelling was compared with that of the whole-season modelling based on four regression methods (i.e. multiple linear regression, artificial neural network, support vector regression and random forest). The results showed that the optimal combinations of variables for the whole-season modelling and the phenological piecewise modelling were different. Compared with the whole-season models, the R2 for the phenological piecewise models improved by 1.4% to 7.6%, the root mean square error (RMSE) decreased by 1.1% to 8.2% among four regression methods . In addition, compared with the whole-season models, the spatiotemporal transferability for the phenological piecewise models was generally better. The accuracies after spatiotemporal transfer for the phenological piecewise models were still higher than that for the whole-season models.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.