全球重建9 km,通过时空融合的2015–2020年8天SMAP地表土壤水分数据集

遥感学报 Pub Date : 2022-07-25 DOI:10.34133/2022/9871246
Haoxuan Yang, Qunming Wang, Wei Zhao, X. Tong, P. Atkinson
{"title":"全球重建9 km,通过时空融合的2015–2020年8天SMAP地表土壤水分数据集","authors":"Haoxuan Yang, Qunming Wang, Wei Zhao, X. Tong, P. Atkinson","doi":"10.34133/2022/9871246","DOIUrl":null,"url":null,"abstract":"Soil moisture, a crucial property for Earth surface research, has been focused widely in various studies. The Soil Moisture Active Passive (SMAP) global products at 36 km and 9 km (called P36 and AP9 in this research) have been published from April 2015. However, the 9 km AP9 product was retrieved from the active radar and L-band passive radiometer and the active radar failed in July 2015. In this research, the virtual image pair-based spatiotemporal fusion model was coupled with a spatial weighting scheme (VIPSTF-SW) to simulate the 9 km AP9 data after failure of the active radar. The method makes full use of all the historical AP9 and P36 data available between April and July 2015. As a result, 8-day composited 9 km SMAP data at the global scale were produced from 2015 to 2020, by downscaling the corresponding 8-day composited P36 data. The available AP9 data and in situ reference data were used to validate the predicted 9 km data. Generally, the predicted 9 km SMAP data can provide more spatial details than P36 and are more accurate than the existing EP9 product. The VIPSTF-SW-predicted 9 km SMAP data are an accurate substitute for AP9 and will be made freely available to support research and applications in hydrology, climatology, ecology, and many other fields at the global scale.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reconstruction of a Global 9 km, 8-Day SMAP Surface Soil Moisture Dataset during 2015–2020 by Spatiotemporal Fusion\",\"authors\":\"Haoxuan Yang, Qunming Wang, Wei Zhao, X. Tong, P. Atkinson\",\"doi\":\"10.34133/2022/9871246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil moisture, a crucial property for Earth surface research, has been focused widely in various studies. The Soil Moisture Active Passive (SMAP) global products at 36 km and 9 km (called P36 and AP9 in this research) have been published from April 2015. However, the 9 km AP9 product was retrieved from the active radar and L-band passive radiometer and the active radar failed in July 2015. In this research, the virtual image pair-based spatiotemporal fusion model was coupled with a spatial weighting scheme (VIPSTF-SW) to simulate the 9 km AP9 data after failure of the active radar. The method makes full use of all the historical AP9 and P36 data available between April and July 2015. As a result, 8-day composited 9 km SMAP data at the global scale were produced from 2015 to 2020, by downscaling the corresponding 8-day composited P36 data. The available AP9 data and in situ reference data were used to validate the predicted 9 km data. Generally, the predicted 9 km SMAP data can provide more spatial details than P36 and are more accurate than the existing EP9 product. The VIPSTF-SW-predicted 9 km SMAP data are an accurate substitute for AP9 and will be made freely available to support research and applications in hydrology, climatology, ecology, and many other fields at the global scale.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9871246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9871246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

土壤水分是地球表面研究的一个重要性质,在各种研究中得到了广泛关注。土壤水分主动-被动(SMAP)全球产品排名36 km和9 km(本研究中称为P36和AP9)已于2015年4月发表。然而 从有源雷达和L波段无源辐射计中检索到km AP9产品,有源雷达于2015年7月出现故障。在本研究中,基于虚拟图像对的时空融合模型与空间加权方案(VIPSTF-SW)相结合,模拟了9 有源雷达故障后的km AP9数据。该方法充分利用了2015年4月至7月期间可用的所有AP9和P36历史数据。结果,8天合成了9 2015年至2020年,通过缩小相应的8天合成P36数据,产生了全球范围内的km SMAP数据。可用的AP9数据和现场参考数据用于验证预测的9 km数据。一般来说,预测的9 km SMAP数据可以提供比P36更多的空间细节,并且比现有的EP9产品更准确。VIPSTF SW预测9 km SMAP数据是AP9的准确替代品,将免费提供,以支持全球范围内水文、气候学、生态学和许多其他领域的研究和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of a Global 9 km, 8-Day SMAP Surface Soil Moisture Dataset during 2015–2020 by Spatiotemporal Fusion
Soil moisture, a crucial property for Earth surface research, has been focused widely in various studies. The Soil Moisture Active Passive (SMAP) global products at 36 km and 9 km (called P36 and AP9 in this research) have been published from April 2015. However, the 9 km AP9 product was retrieved from the active radar and L-band passive radiometer and the active radar failed in July 2015. In this research, the virtual image pair-based spatiotemporal fusion model was coupled with a spatial weighting scheme (VIPSTF-SW) to simulate the 9 km AP9 data after failure of the active radar. The method makes full use of all the historical AP9 and P36 data available between April and July 2015. As a result, 8-day composited 9 km SMAP data at the global scale were produced from 2015 to 2020, by downscaling the corresponding 8-day composited P36 data. The available AP9 data and in situ reference data were used to validate the predicted 9 km data. Generally, the predicted 9 km SMAP data can provide more spatial details than P36 and are more accurate than the existing EP9 product. The VIPSTF-SW-predicted 9 km SMAP data are an accurate substitute for AP9 and will be made freely available to support research and applications in hydrology, climatology, ecology, and many other fields at the global scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
期刊最新文献
Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change Simulating potential tree height for beech-maple-birch forests in northeastern United States on Google Earth Engine Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping Urban renewal mapping: A case study in Beijing from 2000 to 2020 Improved fine-scale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1