横向激励下储液罐的稳定性最优控制

Zhixin Yu, Jie Li, F. Dai, Shaosong Li, Xinxin Cheng
{"title":"横向激励下储液罐的稳定性最优控制","authors":"Zhixin Yu, Jie Li, F. Dai, Shaosong Li, Xinxin Cheng","doi":"10.1504/ijvs.2020.10031697","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of liquid tank stability control on account of the interaction between liquid sloshing and vehicle in emergency obstacle or turning. The dynamic fluid sloshing model within the tank is modelled using governing equations with potential flow theory, combined with the rigid model of semi-trailer; the liquid sloshing model is integrated into the vehicle model. We compare the stability influence of tank with the same mass of liquid cargo and solid cargo in fishhook. With this unsteady state factor, we designed the optimal control strategy and co-simulation in Matlab/Simulink and TruckSim. Simulation results show that the proposed control approach is effective in rollover prevention of liquid tank under transverse excitation.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability optimal control for liquid tank under transverse excitation\",\"authors\":\"Zhixin Yu, Jie Li, F. Dai, Shaosong Li, Xinxin Cheng\",\"doi\":\"10.1504/ijvs.2020.10031697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of liquid tank stability control on account of the interaction between liquid sloshing and vehicle in emergency obstacle or turning. The dynamic fluid sloshing model within the tank is modelled using governing equations with potential flow theory, combined with the rigid model of semi-trailer; the liquid sloshing model is integrated into the vehicle model. We compare the stability influence of tank with the same mass of liquid cargo and solid cargo in fishhook. With this unsteady state factor, we designed the optimal control strategy and co-simulation in Matlab/Simulink and TruckSim. Simulation results show that the proposed control approach is effective in rollover prevention of liquid tank under transverse excitation.\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvs.2020.10031697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvs.2020.10031697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在紧急障碍物或转弯时,考虑液体晃动和车辆相互作用的油箱稳定性控制问题。采用势流理论的控制方程,结合半挂车的刚性模型,建立了液舱内的动态流体晃动模型;液体晃动模型被集成到车辆模型中。我们比较了鱼钩中相同质量的液体货物和固体货物对储罐稳定性的影响。利用该非稳态因子,我们设计了最优控制策略,并在Matlab/Simulink和TruckSim中进行了联合仿真。仿真结果表明,该控制方法能有效地防止横向激励下液舱的侧翻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability optimal control for liquid tank under transverse excitation
This paper studies the problem of liquid tank stability control on account of the interaction between liquid sloshing and vehicle in emergency obstacle or turning. The dynamic fluid sloshing model within the tank is modelled using governing equations with potential flow theory, combined with the rigid model of semi-trailer; the liquid sloshing model is integrated into the vehicle model. We compare the stability influence of tank with the same mass of liquid cargo and solid cargo in fishhook. With this unsteady state factor, we designed the optimal control strategy and co-simulation in Matlab/Simulink and TruckSim. Simulation results show that the proposed control approach is effective in rollover prevention of liquid tank under transverse excitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
期刊最新文献
Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Driving safety of articulated vehicle on a typical interchange Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Research on test scenarios of AEB pedestrian system based on knowledge and accident data Relationship between mobile phone addiction and driving accidents in two groups of drivers with and without accidents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1