电化学合成用cMWCNTs mSA/mCS双极膜的制备与表征

Suyu Shi, Linan Wang, K. Zhao, Chuntai Liu, G. Zheng
{"title":"电化学合成用cMWCNTs mSA/mCS双极膜的制备与表征","authors":"Suyu Shi, Linan Wang, K. Zhao, Chuntai Liu, G. Zheng","doi":"10.1504/IJNM.2019.10014399","DOIUrl":null,"url":null,"abstract":"In this study, a bipolar membrane (BPM) of sodium alginate (SA) and chitosan (CS) was prepared based on carboxyl multi-walled carbon nanotubes (cMWCNTs). To improve the compatibility of anion-exchange layer and cation-exchange layer, polyvinyl alcohol (PVA) was blended with both the SA and CS, respectively. A casting method was employed to prepare the modified BPM named as cMWCNTs-mSA/mCS BPM for simplicity. The morphology, thermal and structure stability, electrochemical properties and ion penetrability of the BPM were characterised. Scanning electron microscopy (SEM) images illustrate a structure consisting of two distinct layers that are closely combined with each other. Thermal gravimetric (TG) results indicate that the thermal stability of cMWCNTs-mSA/mCS BPM is significantly improved. Swelling behaviour implies a proper hydrophilic performance and excellent structure stability in alkali solution. Compared with SA/CS BPM, the working voltage of cMWCNTs-mSA/mCS BPM is decreased sharply. Furthermore, the cMWCNTs-mSA/mCS BPM exhibited higher ion penetrability which is beneficial for electrochemical synthesis.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of cMWCNTs-mSA/mCS bipolar membrane for electrochemical synthesis\",\"authors\":\"Suyu Shi, Linan Wang, K. Zhao, Chuntai Liu, G. Zheng\",\"doi\":\"10.1504/IJNM.2019.10014399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a bipolar membrane (BPM) of sodium alginate (SA) and chitosan (CS) was prepared based on carboxyl multi-walled carbon nanotubes (cMWCNTs). To improve the compatibility of anion-exchange layer and cation-exchange layer, polyvinyl alcohol (PVA) was blended with both the SA and CS, respectively. A casting method was employed to prepare the modified BPM named as cMWCNTs-mSA/mCS BPM for simplicity. The morphology, thermal and structure stability, electrochemical properties and ion penetrability of the BPM were characterised. Scanning electron microscopy (SEM) images illustrate a structure consisting of two distinct layers that are closely combined with each other. Thermal gravimetric (TG) results indicate that the thermal stability of cMWCNTs-mSA/mCS BPM is significantly improved. Swelling behaviour implies a proper hydrophilic performance and excellent structure stability in alkali solution. Compared with SA/CS BPM, the working voltage of cMWCNTs-mSA/mCS BPM is decreased sharply. Furthermore, the cMWCNTs-mSA/mCS BPM exhibited higher ion penetrability which is beneficial for electrochemical synthesis.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2019.10014399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10014399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,以羧基多壁碳纳米管(cMWCNTs)为基础,制备了海藻酸钠(SA)和壳聚糖(CS)的双极膜(BPM)。为了提高阴离子交换层和阳离子交换层的相容性,将聚乙烯醇(PVA)分别与SA和CS共混。为了简便起见,采用浇铸法制备了改性BPM,命名为cMWCNTs mSA/mCS BPM。对BPM的形态、热稳定性和结构稳定性、电化学性能和离子渗透性进行了表征。扫描电子显微镜(SEM)图像显示了由两个彼此紧密结合的不同层组成的结构。热重分析(TG)结果表明,cMWCNTs mSA/mCS BPM的热稳定性显著提高。溶胀行为意味着在碱溶液中具有适当的亲水性能和优异的结构稳定性。与SA/CS BPM相比,cMWCNTs mSA/mCS BPM的工作电压明显降低。此外,cMWCNTs mSA/mCS BPM表现出更高的离子穿透性,这有利于电化学合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and characterization of cMWCNTs-mSA/mCS bipolar membrane for electrochemical synthesis
In this study, a bipolar membrane (BPM) of sodium alginate (SA) and chitosan (CS) was prepared based on carboxyl multi-walled carbon nanotubes (cMWCNTs). To improve the compatibility of anion-exchange layer and cation-exchange layer, polyvinyl alcohol (PVA) was blended with both the SA and CS, respectively. A casting method was employed to prepare the modified BPM named as cMWCNTs-mSA/mCS BPM for simplicity. The morphology, thermal and structure stability, electrochemical properties and ion penetrability of the BPM were characterised. Scanning electron microscopy (SEM) images illustrate a structure consisting of two distinct layers that are closely combined with each other. Thermal gravimetric (TG) results indicate that the thermal stability of cMWCNTs-mSA/mCS BPM is significantly improved. Swelling behaviour implies a proper hydrophilic performance and excellent structure stability in alkali solution. Compared with SA/CS BPM, the working voltage of cMWCNTs-mSA/mCS BPM is decreased sharply. Furthermore, the cMWCNTs-mSA/mCS BPM exhibited higher ion penetrability which is beneficial for electrochemical synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Study on the effect of self-heating effect of bulk acoustic wave filter on the interpolation loss in the band Design and simulation of LDO circuit Research on non-contact ultrasonic vibration assisted rotating electrical discharge machining (EDM) machine tool Influence of rake angle and nose radius on optical silicon nanomachining feed rate and surface quality: a modelling, prediction and optimisation study Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1