将分离表示融合到用于磁性材料异常值检测的自动编码器中

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS Systems Science & Control Engineering Pub Date : 2022-03-31 DOI:10.1080/21642583.2022.2052995
Ying Cao, S. Ko
{"title":"将分离表示融合到用于磁性材料异常值检测的自动编码器中","authors":"Ying Cao, S. Ko","doi":"10.1080/21642583.2022.2052995","DOIUrl":null,"url":null,"abstract":"In materials science, an outlier may be due to variability in measurement, or it may indicate experimental errors. In this paper, we used an unsupervised method to remove outliers before further data-driven material analysis. Recently, autoencoder networks have achieved excellent results by minimizing reconstruction error. However, autoencoders do not promote the separation between outliers and inliers. The proposed SRAE model integrates latent representation to optimize the reconstruction error and ensures that outliers always deviate from the dataset in the compressed representation space. Experiments on the Nd-Fe-B magnetic materials dataset also show that after removing outliers with the proposed method, the prediction result of material property is significantly improved, indicating that the outlier detection effect is excellent.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"181 - 191"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusing separated representation into an autoencoder for magnetic materials outlier detection\",\"authors\":\"Ying Cao, S. Ko\",\"doi\":\"10.1080/21642583.2022.2052995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In materials science, an outlier may be due to variability in measurement, or it may indicate experimental errors. In this paper, we used an unsupervised method to remove outliers before further data-driven material analysis. Recently, autoencoder networks have achieved excellent results by minimizing reconstruction error. However, autoencoders do not promote the separation between outliers and inliers. The proposed SRAE model integrates latent representation to optimize the reconstruction error and ensures that outliers always deviate from the dataset in the compressed representation space. Experiments on the Nd-Fe-B magnetic materials dataset also show that after removing outliers with the proposed method, the prediction result of material property is significantly improved, indicating that the outlier detection effect is excellent.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":\"10 1\",\"pages\":\"181 - 191\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2022.2052995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2052995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在材料科学中,异常值可能是由于测量的可变性,或者它可能表明实验错误。在本文中,在进一步的数据驱动材料分析之前,我们使用了一种无监督的方法来去除异常值。近年来,自编码器网络在最小化重构误差方面取得了优异的效果。然而,自编码器并不能促进离群值和内线的分离。提出的SRAE模型集成了潜在表示,优化了重构误差,保证了在压缩的表示空间中离群点总是偏离数据集。在Nd-Fe-B磁性材料数据集上的实验也表明,采用该方法去除异常点后,材料性能的预测结果有明显改善,表明异常点检测效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusing separated representation into an autoencoder for magnetic materials outlier detection
In materials science, an outlier may be due to variability in measurement, or it may indicate experimental errors. In this paper, we used an unsupervised method to remove outliers before further data-driven material analysis. Recently, autoencoder networks have achieved excellent results by minimizing reconstruction error. However, autoencoders do not promote the separation between outliers and inliers. The proposed SRAE model integrates latent representation to optimize the reconstruction error and ensures that outliers always deviate from the dataset in the compressed representation space. Experiments on the Nd-Fe-B magnetic materials dataset also show that after removing outliers with the proposed method, the prediction result of material property is significantly improved, indicating that the outlier detection effect is excellent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
期刊最新文献
MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning Research on the operation of integrated energy microgrid based on cluster power sharing mechanism Low-frequency operation control method for medium-voltage high-capacity FC-MMC type frequency converter Customized passenger path optimization for airport connections under carbon emissions restrictions Nonlinear impact analysis of built environment on urban road traffic safety risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1