基于多机器人空中系统的鸟类分流器安装任务的信号时序逻辑运动规划

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2023-07-31 DOI:10.1109/ACCESS.2023.3300240
Alvaro Caballero;Giuseppe Silano
{"title":"基于多机器人空中系统的鸟类分流器安装任务的信号时序逻辑运动规划","authors":"Alvaro Caballero;Giuseppe Silano","doi":"10.1109/ACCESS.2023.3300240","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"81361-81377"},"PeriodicalIF":3.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6287639/10005208/10197369.pdf","citationCount":"3","resultStr":"{\"title\":\"A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks With Multi-Robot Aerial Systems\",\"authors\":\"Alvaro Caballero;Giuseppe Silano\",\"doi\":\"10.1109/ACCESS.2023.3300240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"11 \",\"pages\":\"81361-81377\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6287639/10005208/10197369.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10197369/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10197369/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了用多旋翼机队安装鸟类导流器的任务分配和轨迹生成问题。提出的解决方案扩展了我们之前的运动规划,以计算可行和受限的轨迹,考虑有效载荷能力限制和充电约束。采用信号时序逻辑(STL)规范对任务目标和时序需求进行编码。此外,还引入了基于事件的重新规划策略来处理不可预见的故障。在安装操作过程中,还采用了能量最小化项来隐含地节省多旋翼飞行时间。通过MATLAB和Gazebo仿真,以及在仿真场景中进行的现场实验,验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks With Multi-Robot Aerial Systems
This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Corrections to “A Systematic Literature Review of the IoT in Agriculture–Global Adoption, Innovations, Security Privacy Challenges” A Progressive-Assisted Object Detection Method Based on Instance Attention Ensemble Balanced Nested Dichotomy Fuzzy Models for Software Requirement Risk Prediction Enhancing Burn Severity Assessment With Deep Learning: A Comparative Analysis and Computational Efficiency Evaluation Inductor-Less Low-Power Low-Voltage Cross-Coupled Regulated-Cascode Transimpedance Amplifier Circuit in CMOS Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1