利用贝叶斯反演估算带偏移的地震振幅变化的净总比和净产油

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Interpretation-A Journal of Subsurface Characterization Pub Date : 2023-09-07 DOI:10.1190/int-2023-0034.1
S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen
{"title":"利用贝叶斯反演估算带偏移的地震振幅变化的净总比和净产油","authors":"S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen","doi":"10.1190/int-2023-0034.1","DOIUrl":null,"url":null,"abstract":"Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.","PeriodicalId":51318,"journal":{"name":"Interpretation-A Journal of Subsurface Characterization","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of net-to-gross ratio and net pay from seismic amplitude variation with offset using Bayesian inversion\",\"authors\":\"S. Tschache, V. Vinje, Jan Erik Lie, Martin Brandtzæg Gundem, Einar Iversen\",\"doi\":\"10.1190/int-2023-0034.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.\",\"PeriodicalId\":51318,\"journal\":{\"name\":\"Interpretation-A Journal of Subsurface Characterization\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpretation-A Journal of Subsurface Characterization\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/int-2023-0034.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation-A Journal of Subsurface Characterization","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/int-2023-0034.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

净毛比和净产层是浊积岩储层表征的基本属性。我们提出了一种贝叶斯反演方法,通过在储层顶部测量的振幅随偏移量变化(AVO)属性的截距和梯度来估计储层属性的概率密度分布。该方法适用于从井资料中观察到的砂-页岩互层的区域特征。通过蒙特卡罗模拟来估计似然函数,其中包括生成伪井,使用反射率法进行地震建模,选取储层顶部的振幅,并估计AVO截距和梯度。在北海油田的实例中,AVO梯度对净毛比的变化最为敏感,而AVO截距对孔隙流体类型最为敏感。该方法在拟井和合成地震AVO资料上进行了成功的反演试验。我们表明,反演可以应用于AVO图,以产生最可能的净毛比和净产油比估计图,由此产生的净产油和不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of net-to-gross ratio and net pay from seismic amplitude variation with offset using Bayesian inversion
Net-to-gross ratio and net pay are essential properties for characterizing turbidite reservoirs. We present a Bayesian inversion that estimates the probability density distributions of the reservoir properties from the amplitude-variation-with-offset (AVO) attributes intercept and gradient, which are measured at the top of the reservoir. The method is adapted to the region-specific characteristics of the sand-shale interbedding as observed from well data. The likelihood function is estimated by a Monte Carlo simulation, which involves generating pseudo-wells, seismic modeling using the reflectivity method, picking the amplitudes at the top of the reservoir, and estimating the AVO intercept and gradient. In a North Sea oil field case example, the AVO gradient is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is most sensitive to the type of pore fluid. The inversion was successfully tested on pseudo-wells and synthetic seismic AVO from well data. We show that the inversion can be applied to AVO maps to produce maps of the most likely estimates of the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
8.30%
发文量
126
期刊介绍: ***Jointly published by the American Association of Petroleum Geologists (AAPG) and the Society of Exploration Geophysicists (SEG)*** Interpretation is a new, peer-reviewed journal for advancing the practice of subsurface interpretation.
期刊最新文献
Seismic resolution enhancement with variational modal based fast matching pursuit decomposition The Lower Silurian Longmaxi rapid-transgressive black shale and organic matter distribution on the Upper Yangtze Platform, China Machine Learning Application to Assess Occurrence and Saturations of Methane Hydrate in Marine Deposits Offshore India Mary Magdalene: A Visual History Women in John’s Gospel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1