A. Udayakumar, R. Anjanappa, K. Subaharan, T. M. Shivalingaswamy
{"title":"大蜂四花蜂(膜翅目:蜂科:花蜂科)对圆叶银蜂的觅食特性","authors":"A. Udayakumar, R. Anjanappa, K. Subaharan, T. M. Shivalingaswamy","doi":"10.13102/sociobiology.v70i2.8262","DOIUrl":null,"url":null,"abstract":"Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.","PeriodicalId":21971,"journal":{"name":"Sociobiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae)\",\"authors\":\"A. Udayakumar, R. Anjanappa, K. Subaharan, T. M. Shivalingaswamy\",\"doi\":\"10.13102/sociobiology.v70i2.8262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.\",\"PeriodicalId\":21971,\"journal\":{\"name\":\"Sociobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociobiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13102/sociobiology.v70i2.8262\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociobiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13102/sociobiology.v70i2.8262","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae)
Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.
期刊介绍:
SOCIOBIOLOGY publishes high quality articles that significantly contribute to the knowledge of Entomology, with emphasis on social insects. Articles previously submitted to other journals are not accepted. SOCIOBIOLOGY publishes original research papers and invited review articles on all aspects related to the biology, evolution and systematics of social and pre-social insects (Ants, Termites, Bees and Wasps). The journal is currently expanding its scope to incorporate the publication of articles dealing with other arthropods that exhibit sociality. Articles may cover a range of subjects such as ecology, ethology, morphology, population genetics, physiology, toxicology, reproduction, sociobiology, caste differentiation as well as economic impact and pest management.