火星陨石坑的风化过程:对反复出现的斜坡线和液态水位置的影响

P. García-Chevesich, E. Bendek, R. Pizarro, R. Valdés-Pineda, David González, H. Bown, Eduardo E. Martínez, Luis F. Gonzalez
{"title":"火星陨石坑的风化过程:对反复出现的斜坡线和液态水位置的影响","authors":"P. García-Chevesich, E. Bendek, R. Pizarro, R. Valdés-Pineda, David González, H. Bown, Eduardo E. Martínez, Luis F. Gonzalez","doi":"10.4236/OJMH.2017.74014","DOIUrl":null,"url":null,"abstract":"Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.","PeriodicalId":70695,"journal":{"name":"现代水文学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weathering Processes on Martian Craters: Implications on Recurring Slope Lineae and the Location of Liquid Water\",\"authors\":\"P. García-Chevesich, E. Bendek, R. Pizarro, R. Valdés-Pineda, David González, H. Bown, Eduardo E. Martínez, Luis F. Gonzalez\",\"doi\":\"10.4236/OJMH.2017.74014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.\",\"PeriodicalId\":70695,\"journal\":{\"name\":\"现代水文学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代水文学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJMH.2017.74014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代水文学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJMH.2017.74014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在发现其中存在水之后,最近人们把注意力放在了循环斜坡线(RSL)上。假设RSL是由流动的水引起的。然而,尽管情况可能如此,但RSL的一般特征及其在火星上的季节和空间分布,以及它们在陨石坑内的出现,表明RSL与冻结含水层的风化相对应,这与地球上撞击陨石坑和碎石边坡中发生的边坡稳定过程相吻合。在本研究中,我们将RSL与发生在撞击坑上的类似风化过程和地球上发生的水文地质过程(包括冰、水、风蚀和天然含水层补给过程)联系起来。我们能够创建一个关于RSL如何发展的概念模型,为什么它们主要在中纬度地区的陨石坑周围被发现,为什么它们在高纬度地区的板条箱的一侧出现的频率更高,为什么在火星南半球有更多的RSL。考虑到在经历RSL的陨石坑中发生的整个水文地质过程,我们能够预测这颗红色星球上最有可能存在大量液态水的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weathering Processes on Martian Craters: Implications on Recurring Slope Lineae and the Location of Liquid Water
Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
84
期刊最新文献
Adequacy of Water Use Resources for Drinking and Irrigation, Study Case of Sarh City, Capital of Moyen-Chari Province, CHAD Analysis on Residents’ Satisfaction and Its Influencing Factors with Water Environment Management: Based on the Data from Xiaoqing River Utility Impact below Bridge or Culvert Soffit on Open Channel Flow A Framework to Regionalize Flow Information in a Catchment with Limited Hydrological Data A Novel Approach for Optimum Conjunctive Use Management of Groundwater and Surface Water Resources under Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1