酚类化合物增强番茄耐低温胁迫能力

Y. Meena, D. Khurana, N. Kaur, Kulbir Singh
{"title":"酚类化合物增强番茄耐低温胁迫能力","authors":"Y. Meena, D. Khurana, N. Kaur, Kulbir Singh","doi":"10.9734/BJAST/2017/32889","DOIUrl":null,"url":null,"abstract":"performed the experiment, statistical analysis, the protocol the first the DSK, NK and KS designed and managed the analyses of the study. the ABSTRACT Low temperature stress their effect on morphological, yield and quality traits. Based on two year study, its observed that low temperature significantly reduces the growth traits (plant height, number of branches, number of leaves, shoot and root length, and total biomass of plant), yield attributes (days to 50% flowering, fruit weight and fruit yield) and quality parameter (total soluble solid), however there was an increase in titrable acidity and ascorbic acid. On the hand, application of phenolic compounds significantly enhanced the growth, yield and TSS, while, decreased titrable acidity and ascorbic acid under stress. Two years study has confirmed that phenolic compounds protect plants against low temperature stress and enhanced production of tomato with an increase in the yield and quality contributions attributes. Among the treatments, SA (1.0 mM) was found as most effective to enhance low temperature stress tolerance in tomato.","PeriodicalId":91221,"journal":{"name":"British journal of applied science & technology","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Phenolic Compounds Enhanced Low Temperature Stress Tolerance in Tomato (Solanum lycopersicum L.)\",\"authors\":\"Y. Meena, D. Khurana, N. Kaur, Kulbir Singh\",\"doi\":\"10.9734/BJAST/2017/32889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"performed the experiment, statistical analysis, the protocol the first the DSK, NK and KS designed and managed the analyses of the study. the ABSTRACT Low temperature stress their effect on morphological, yield and quality traits. Based on two year study, its observed that low temperature significantly reduces the growth traits (plant height, number of branches, number of leaves, shoot and root length, and total biomass of plant), yield attributes (days to 50% flowering, fruit weight and fruit yield) and quality parameter (total soluble solid), however there was an increase in titrable acidity and ascorbic acid. On the hand, application of phenolic compounds significantly enhanced the growth, yield and TSS, while, decreased titrable acidity and ascorbic acid under stress. Two years study has confirmed that phenolic compounds protect plants against low temperature stress and enhanced production of tomato with an increase in the yield and quality contributions attributes. Among the treatments, SA (1.0 mM) was found as most effective to enhance low temperature stress tolerance in tomato.\",\"PeriodicalId\":91221,\"journal\":{\"name\":\"British journal of applied science & technology\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of applied science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/BJAST/2017/32889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of applied science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/BJAST/2017/32889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本方案首先由DSK、NK和KS设计和管理本研究的分析。低温胁迫对其形态、产量和品质性状的影响。通过两年的研究发现,低温显著降低了植株的生长性状(株高、枝数、叶数、茎长和根长、植株总生物量)、产量属性(开花至50%的天数、果实重量和果实产量)和品质参数(总可溶性固形物),但可滴定酸度和抗坏血酸增加。另一方面,酚类化合物的施用显著提高了胁迫下水稻的生长、产量和TSS,降低了可滴定酸度和抗坏血酸。两年来的研究证实,酚类化合物对番茄的低温胁迫具有保护作用,能提高番茄的产量和品质贡献。其中,SA (1.0 mM)处理对番茄耐低温胁迫效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phenolic Compounds Enhanced Low Temperature Stress Tolerance in Tomato (Solanum lycopersicum L.)
performed the experiment, statistical analysis, the protocol the first the DSK, NK and KS designed and managed the analyses of the study. the ABSTRACT Low temperature stress their effect on morphological, yield and quality traits. Based on two year study, its observed that low temperature significantly reduces the growth traits (plant height, number of branches, number of leaves, shoot and root length, and total biomass of plant), yield attributes (days to 50% flowering, fruit weight and fruit yield) and quality parameter (total soluble solid), however there was an increase in titrable acidity and ascorbic acid. On the hand, application of phenolic compounds significantly enhanced the growth, yield and TSS, while, decreased titrable acidity and ascorbic acid under stress. Two years study has confirmed that phenolic compounds protect plants against low temperature stress and enhanced production of tomato with an increase in the yield and quality contributions attributes. Among the treatments, SA (1.0 mM) was found as most effective to enhance low temperature stress tolerance in tomato.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superluminal Hydrogen Atom in a Constant Magnetic Field in (3+1)-dimensional Spacetime (II) Climate Change and Its Impact on Nutritional Status and Health of Children Effect of Bio-stimulants on Improving Floral Characteristics, Yield and Quality of Apple cv. Red Delicious An Analysis of the Potential, Constraints and Strategies for Development of Marirangwe Farm (A Project of the Women’s University in Africa) Choosing the Optimal Segmentation Level for POS Tagging of the Quranic Arabic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1