Imen ZRIBI , H. Ellouzi , I. Mnasri , N. Abdelkader , A. Ben Hmida , S. Dorai , A. Debez , F. Charfi-Cheikhrouha , R. Zakhama-Sraieb
{"title":"丝状大型藻类Chaetomorpha linum对结节状小蠊的短期影响:克隆整合能减轻大型藻类的影响吗?","authors":"Imen ZRIBI , H. Ellouzi , I. Mnasri , N. Abdelkader , A. Ben Hmida , S. Dorai , A. Debez , F. Charfi-Cheikhrouha , R. Zakhama-Sraieb","doi":"10.1016/j.aquabot.2023.103659","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are clonal plants that can form meadows in shallow coastal water. Under natural conditions, drift macroalgae can be found associated with seagrass but when facilitated by high nutrient input, opportunistic macroalgae can grow excessively and form mats that impose stressful and highly competitive conditions for seagrasses. In this study, we experimentally investigate the ecological significance of clonal integration in the ability of <em>Cymodocea nodosa</em> to tolerate biotic stress triggered by interactions with the drift macroalgae <em>Chaeotomorpha linum.</em> Our findings provide little support for the hypothesis that clonal integration can influence <em>C. nodosa</em> response to stress, as disconnected plants did not show significant differences in structural and morphological characteristics compared to intact plants. However, the physiological analysis suggests that <em>C. nodosa</em> may still benefit from shared resources with neighbouring plants to mitigate stress caused by <em>C. linum</em>. Moreover, the results indicate that <em>C. nodosa</em> adapts to the presence of the filamentous drift macroalgae <em>C. linum</em> by increasing leaf photosynthetic content, reducing growth rate, and modulating its morphology, regardless of its integration status.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"188 ","pages":"Article 103659"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term effect of filamentous macroalgae Chaetomorpha linum on Cymodocea nodosa: Does clonal integration alleviate macroalgae impacts?\",\"authors\":\"Imen ZRIBI , H. Ellouzi , I. Mnasri , N. Abdelkader , A. Ben Hmida , S. Dorai , A. Debez , F. Charfi-Cheikhrouha , R. Zakhama-Sraieb\",\"doi\":\"10.1016/j.aquabot.2023.103659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrasses are clonal plants that can form meadows in shallow coastal water. Under natural conditions, drift macroalgae can be found associated with seagrass but when facilitated by high nutrient input, opportunistic macroalgae can grow excessively and form mats that impose stressful and highly competitive conditions for seagrasses. In this study, we experimentally investigate the ecological significance of clonal integration in the ability of <em>Cymodocea nodosa</em> to tolerate biotic stress triggered by interactions with the drift macroalgae <em>Chaeotomorpha linum.</em> Our findings provide little support for the hypothesis that clonal integration can influence <em>C. nodosa</em> response to stress, as disconnected plants did not show significant differences in structural and morphological characteristics compared to intact plants. However, the physiological analysis suggests that <em>C. nodosa</em> may still benefit from shared resources with neighbouring plants to mitigate stress caused by <em>C. linum</em>. Moreover, the results indicate that <em>C. nodosa</em> adapts to the presence of the filamentous drift macroalgae <em>C. linum</em> by increasing leaf photosynthetic content, reducing growth rate, and modulating its morphology, regardless of its integration status.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"188 \",\"pages\":\"Article 103659\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030437702300044X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030437702300044X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Short-term effect of filamentous macroalgae Chaetomorpha linum on Cymodocea nodosa: Does clonal integration alleviate macroalgae impacts?
Seagrasses are clonal plants that can form meadows in shallow coastal water. Under natural conditions, drift macroalgae can be found associated with seagrass but when facilitated by high nutrient input, opportunistic macroalgae can grow excessively and form mats that impose stressful and highly competitive conditions for seagrasses. In this study, we experimentally investigate the ecological significance of clonal integration in the ability of Cymodocea nodosa to tolerate biotic stress triggered by interactions with the drift macroalgae Chaeotomorpha linum. Our findings provide little support for the hypothesis that clonal integration can influence C. nodosa response to stress, as disconnected plants did not show significant differences in structural and morphological characteristics compared to intact plants. However, the physiological analysis suggests that C. nodosa may still benefit from shared resources with neighbouring plants to mitigate stress caused by C. linum. Moreover, the results indicate that C. nodosa adapts to the presence of the filamentous drift macroalgae C. linum by increasing leaf photosynthetic content, reducing growth rate, and modulating its morphology, regardless of its integration status.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.