使用非复杂多相算法的扫描电子显微镜图像对比度增强

Q3 Economics, Econometrics and Finance Applied Computer Science Pub Date : 2022-06-30 DOI:10.35784/acs-2022-11
Z. Alsaygh, Z. Al-Ameen
{"title":"使用非复杂多相算法的扫描电子显微镜图像对比度增强","authors":"Z. Alsaygh, Z. Al-Ameen","doi":"10.35784/acs-2022-11","DOIUrl":null,"url":null,"abstract":"Microscopic technology has recently flourished, allowing unparalleled viewing of microscopic elements invisible to the normal eye. Still, the existence of unavoidable constraints led on many occasions to have low contrast scanning electron microscopic (SEM) images. Thus, a noncomplex multiphase (NM) algorithm is proposed in this study to provide better contrast for various SEM images. The developed algorithm contains the following stages: first, the intensities of the degraded image are modified using a two-step regularization procedure. Next, a gamma-corrected cumulative distribution function of the logarithmic uniform distribution approach is applied for contrast enhancement. Finally, an automated histogram expansion technique is used to redistribute the pixels of the image properly. The NM algorithm is applied to natural-contrast distorted SEM images, as well as its results are compared with six algorithms with different processing notions. To assess the quality of images, three modern metrics are utilized, in that each metric measures the quality based on unique aspects. Extensive appraisals revealed the adequate processing abilities of the NM algorithm, as it can process many images suitably and its performances outperformed many available contrast enhancement algorithms in different aspects.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM\",\"authors\":\"Z. Alsaygh, Z. Al-Ameen\",\"doi\":\"10.35784/acs-2022-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscopic technology has recently flourished, allowing unparalleled viewing of microscopic elements invisible to the normal eye. Still, the existence of unavoidable constraints led on many occasions to have low contrast scanning electron microscopic (SEM) images. Thus, a noncomplex multiphase (NM) algorithm is proposed in this study to provide better contrast for various SEM images. The developed algorithm contains the following stages: first, the intensities of the degraded image are modified using a two-step regularization procedure. Next, a gamma-corrected cumulative distribution function of the logarithmic uniform distribution approach is applied for contrast enhancement. Finally, an automated histogram expansion technique is used to redistribute the pixels of the image properly. The NM algorithm is applied to natural-contrast distorted SEM images, as well as its results are compared with six algorithms with different processing notions. To assess the quality of images, three modern metrics are utilized, in that each metric measures the quality based on unique aspects. Extensive appraisals revealed the adequate processing abilities of the NM algorithm, as it can process many images suitably and its performances outperformed many available contrast enhancement algorithms in different aspects.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2022-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2022-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

摘要

显微镜技术最近蓬勃发展,可以无与伦比地观察普通眼睛看不见的微观元素。尽管如此,不可避免的限制的存在导致在许多情况下具有低对比度扫描电子显微镜(SEM)图像。因此,本研究提出了一种非复杂多相(NM)算法,为各种SEM图像提供更好的对比度。所开发的算法包括以下阶段:首先,使用两步正则化程序修改退化图像的强度。接下来,对数均匀分布方法的伽马校正累积分布函数被应用于对比度增强。最后,使用自动直方图扩展技术来适当地重新分配图像的像素。将NM算法应用于自然对比度畸变的SEM图像,并将其结果与六种不同处理理念的算法进行了比较。为了评估图像的质量,使用了三个现代指标,因为每个指标都基于独特的方面来衡量质量。广泛的评估表明,NM算法具有足够的处理能力,因为它可以适当地处理许多图像,并且在不同方面的性能优于许多可用的对比度增强算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM
Microscopic technology has recently flourished, allowing unparalleled viewing of microscopic elements invisible to the normal eye. Still, the existence of unavoidable constraints led on many occasions to have low contrast scanning electron microscopic (SEM) images. Thus, a noncomplex multiphase (NM) algorithm is proposed in this study to provide better contrast for various SEM images. The developed algorithm contains the following stages: first, the intensities of the degraded image are modified using a two-step regularization procedure. Next, a gamma-corrected cumulative distribution function of the logarithmic uniform distribution approach is applied for contrast enhancement. Finally, an automated histogram expansion technique is used to redistribute the pixels of the image properly. The NM algorithm is applied to natural-contrast distorted SEM images, as well as its results are compared with six algorithms with different processing notions. To assess the quality of images, three modern metrics are utilized, in that each metric measures the quality based on unique aspects. Extensive appraisals revealed the adequate processing abilities of the NM algorithm, as it can process many images suitably and its performances outperformed many available contrast enhancement algorithms in different aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1