{"title":"离散gagliado - nirenberg不等式及其在具有焦耳效应项的对流扩散方程有限体积近似中的应用","authors":"C. Calgaro, C. Cancès, E. Creusé","doi":"10.1093/imanum/drad063","DOIUrl":null,"url":null,"abstract":"A discrete order-two Gagliardo–Nirenberg inequality is established for piecewise constant functions defined on a two-dimensional structured mesh composed of rectangular cells. As in the continuous framework, this discrete Gagliardo–Nirenberg inequality allows to control in particular the $L^4$ norm of the discrete gradient of the numerical solution by the $L^2$ norm of its discrete Hessian times its $L^\\infty $ norm. This result is crucial for the convergence analysis of a finite volume method for the approximation of a convection–diffusion equation involving a Joule effect term on a uniform mesh in each direction. The convergence proof relies on compactness arguments and on a priori estimates under a smallness assumption on the data, which is essential also in the continuous framework.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Gagliardo–Nirenberg inequality and application to the finite volume approximation of a convection–diffusion equation with a Joule effect term\",\"authors\":\"C. Calgaro, C. Cancès, E. Creusé\",\"doi\":\"10.1093/imanum/drad063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discrete order-two Gagliardo–Nirenberg inequality is established for piecewise constant functions defined on a two-dimensional structured mesh composed of rectangular cells. As in the continuous framework, this discrete Gagliardo–Nirenberg inequality allows to control in particular the $L^4$ norm of the discrete gradient of the numerical solution by the $L^2$ norm of its discrete Hessian times its $L^\\\\infty $ norm. This result is crucial for the convergence analysis of a finite volume method for the approximation of a convection–diffusion equation involving a Joule effect term on a uniform mesh in each direction. The convergence proof relies on compactness arguments and on a priori estimates under a smallness assumption on the data, which is essential also in the continuous framework.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Discrete Gagliardo–Nirenberg inequality and application to the finite volume approximation of a convection–diffusion equation with a Joule effect term
A discrete order-two Gagliardo–Nirenberg inequality is established for piecewise constant functions defined on a two-dimensional structured mesh composed of rectangular cells. As in the continuous framework, this discrete Gagliardo–Nirenberg inequality allows to control in particular the $L^4$ norm of the discrete gradient of the numerical solution by the $L^2$ norm of its discrete Hessian times its $L^\infty $ norm. This result is crucial for the convergence analysis of a finite volume method for the approximation of a convection–diffusion equation involving a Joule effect term on a uniform mesh in each direction. The convergence proof relies on compactness arguments and on a priori estimates under a smallness assumption on the data, which is essential also in the continuous framework.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.