N. Liu, Qianren Tian, Zifei Wang, Xiangyu Xu, Jianxun Fu
{"title":"微量碲对MnS夹杂物的改性提高中碳低硫钢的机械加工性能","authors":"N. Liu, Qianren Tian, Zifei Wang, Xiangyu Xu, Jianxun Fu","doi":"10.1080/03019233.2023.2197526","DOIUrl":null,"url":null,"abstract":"ABSTRACT Under the industrial process conditions, trace tellurium (13 ppm and 22 ppm) was added to medium-carbon low-sulfur steel to optimize the morphology of MnS inclusion and thereby enhance the machinability of the steel. Voller-Beckermann microsegregation model was used to calculate the precipitation thermodynamics and growth kinetics of MnS inclusion. The morphology of observed MnS inclusion is mainly polygonal (type III), the observed microstructures of the steel are bulk-, acicular-ferrite, and pearlite, the inclusions are mainly present in the bulk-ferrite. The calculation results of inclusion relative plasticity show that 13 ppm Te reduces the relative plasticity of inclusions, while at a Te content of 22 ppm, the relative plasticity of inclusions increases by approximately 70%. Compared with the steel without Te, when containing 22 ppm Te, the material has the best machinability, the average cutting force and average surface roughness of steel are reduced by 3.47% and 38.75%, respectively.","PeriodicalId":14753,"journal":{"name":"Ironmaking & Steelmaking","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modification of MnS inclusion with trace tellurium to improve the machinability of medium-carbon low-sulfur steel\",\"authors\":\"N. Liu, Qianren Tian, Zifei Wang, Xiangyu Xu, Jianxun Fu\",\"doi\":\"10.1080/03019233.2023.2197526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Under the industrial process conditions, trace tellurium (13 ppm and 22 ppm) was added to medium-carbon low-sulfur steel to optimize the morphology of MnS inclusion and thereby enhance the machinability of the steel. Voller-Beckermann microsegregation model was used to calculate the precipitation thermodynamics and growth kinetics of MnS inclusion. The morphology of observed MnS inclusion is mainly polygonal (type III), the observed microstructures of the steel are bulk-, acicular-ferrite, and pearlite, the inclusions are mainly present in the bulk-ferrite. The calculation results of inclusion relative plasticity show that 13 ppm Te reduces the relative plasticity of inclusions, while at a Te content of 22 ppm, the relative plasticity of inclusions increases by approximately 70%. Compared with the steel without Te, when containing 22 ppm Te, the material has the best machinability, the average cutting force and average surface roughness of steel are reduced by 3.47% and 38.75%, respectively.\",\"PeriodicalId\":14753,\"journal\":{\"name\":\"Ironmaking & Steelmaking\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ironmaking & Steelmaking\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/03019233.2023.2197526\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ironmaking & Steelmaking","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/03019233.2023.2197526","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Modification of MnS inclusion with trace tellurium to improve the machinability of medium-carbon low-sulfur steel
ABSTRACT Under the industrial process conditions, trace tellurium (13 ppm and 22 ppm) was added to medium-carbon low-sulfur steel to optimize the morphology of MnS inclusion and thereby enhance the machinability of the steel. Voller-Beckermann microsegregation model was used to calculate the precipitation thermodynamics and growth kinetics of MnS inclusion. The morphology of observed MnS inclusion is mainly polygonal (type III), the observed microstructures of the steel are bulk-, acicular-ferrite, and pearlite, the inclusions are mainly present in the bulk-ferrite. The calculation results of inclusion relative plasticity show that 13 ppm Te reduces the relative plasticity of inclusions, while at a Te content of 22 ppm, the relative plasticity of inclusions increases by approximately 70%. Compared with the steel without Te, when containing 22 ppm Te, the material has the best machinability, the average cutting force and average surface roughness of steel are reduced by 3.47% and 38.75%, respectively.
期刊介绍:
Ironmaking & Steelmaking: Processes, Products and Applications monitors international technological advances in the industry with a strong element of engineering and product related material. First class refereed papers from the international iron and steel community cover all stages of the process, from ironmaking and its attendant technologies, through casting and steelmaking, to rolling, forming and delivery of the product, including monitoring, quality assurance and environmental issues. The journal also carries research profiles, features on technological and industry developments and expert reviews on major conferences.