一种基于迁移学习的MRI图像脑肿瘤检测模型

Faiz Rofi Hencya, Satria Mandala, T. Tang, Mohd Soperi, Mohd Zahid
{"title":"一种基于迁移学习的MRI图像脑肿瘤检测模型","authors":"Faiz Rofi Hencya, Satria Mandala, T. Tang, Mohd Soperi, Mohd Zahid","doi":"10.25077/jnte.v12n2.1123.2023","DOIUrl":null,"url":null,"abstract":"Brain tumors are life-threatening medical conditions characterized by abnormal cell proliferation in or near the brain. Early detection is crucial for successful treatment. However, the scarcity of labelled brain tumor datasets and the tendency of convolutional neural networks (CNNs) to overfit on small datasets have made it challenging to train accurate deep learning models for brain tumor detection. Transfer learning is a machine learning technique that allows a model trained on one task to be reused for a different task. This approach is effective in brain tumor detection as it allows CNNs to be trained on larger datasets and generalize better to new data. In this research, we propose a transfer learning approach using the Xception model to detect four types of brain tumors: meningioma, pituitary, glioma, and no tumor (healthy brain). The performance of our model was evaluated on two datasets, demonstrating a sensitivity of 98.07%, specificity of 97.83%, accuracy of 98.15%, precision of 98.07%, and f1-score of 98.07%. Additionally, we developed a user-friendly prototype application for easy access to the Xception model for brain tumor detection. The prototype was evaluated on a separate dataset, and the results showed a sensitivity of 95.30%, specificity of 96.07%, accuracy of 95.30%, precision of 95.31%, and f1-score of 95.27%. These results suggest that the Xception model is a promising approach for brain tumor detection. The prototype application provides a convenient and easy-to-use way for clinical practitioners and radiologists to access the model. We believe the model and prototype generated from this research will be valuable tools for diagnosing, quantifying, and monitoring brain tumors.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transfer Learning-Based Model for Brain Tumor Detection in MRI Images\",\"authors\":\"Faiz Rofi Hencya, Satria Mandala, T. Tang, Mohd Soperi, Mohd Zahid\",\"doi\":\"10.25077/jnte.v12n2.1123.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumors are life-threatening medical conditions characterized by abnormal cell proliferation in or near the brain. Early detection is crucial for successful treatment. However, the scarcity of labelled brain tumor datasets and the tendency of convolutional neural networks (CNNs) to overfit on small datasets have made it challenging to train accurate deep learning models for brain tumor detection. Transfer learning is a machine learning technique that allows a model trained on one task to be reused for a different task. This approach is effective in brain tumor detection as it allows CNNs to be trained on larger datasets and generalize better to new data. In this research, we propose a transfer learning approach using the Xception model to detect four types of brain tumors: meningioma, pituitary, glioma, and no tumor (healthy brain). The performance of our model was evaluated on two datasets, demonstrating a sensitivity of 98.07%, specificity of 97.83%, accuracy of 98.15%, precision of 98.07%, and f1-score of 98.07%. Additionally, we developed a user-friendly prototype application for easy access to the Xception model for brain tumor detection. The prototype was evaluated on a separate dataset, and the results showed a sensitivity of 95.30%, specificity of 96.07%, accuracy of 95.30%, precision of 95.31%, and f1-score of 95.27%. These results suggest that the Xception model is a promising approach for brain tumor detection. The prototype application provides a convenient and easy-to-use way for clinical practitioners and radiologists to access the model. We believe the model and prototype generated from this research will be valuable tools for diagnosing, quantifying, and monitoring brain tumors.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n2.1123.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1123.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤是一种危及生命的疾病,其特征是大脑内或附近的异常细胞增殖。早期发现对成功治疗至关重要。然而,标记的脑肿瘤数据集的稀缺性以及卷积神经网络(CNNs)在小数据集上过度拟合的趋势,使得训练用于脑肿瘤检测的精确深度学习模型变得具有挑战性。迁移学习是一种机器学习技术,它允许在一个任务上训练的模型被重新用于另一个任务。这种方法在脑肿瘤检测中是有效的,因为它允许在更大的数据集上训练细胞神经网络,并更好地推广到新数据。在这项研究中,我们提出了一种使用Xception模型检测四种类型脑肿瘤的迁移学习方法:脑膜瘤、垂体瘤、神经胶质瘤和无肿瘤(健康大脑)。我们的模型在两个数据集上进行了性能评估,其灵敏度为98.07%,特异性为97.83%,准确度为98.15%,精密度为98.07%n,f1得分为98.07%.此外,我们开发了一个用户友好的原型应用程序,可轻松访问Xception模型进行脑肿瘤检测。在单独的数据集上对原型进行了评估,结果显示灵敏度为95.30%,特异性为96.07%,准确度为95.30%、精密度为95.31%,f1评分为95.27%。这些结果表明,Xception模型是一种很有前途的脑肿瘤检测方法。原型应用程序为临床从业者和放射科医生访问模型提供了一种方便易用的方式。我们相信,这项研究产生的模型和原型将是诊断、量化和监测脑肿瘤的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Transfer Learning-Based Model for Brain Tumor Detection in MRI Images
Brain tumors are life-threatening medical conditions characterized by abnormal cell proliferation in or near the brain. Early detection is crucial for successful treatment. However, the scarcity of labelled brain tumor datasets and the tendency of convolutional neural networks (CNNs) to overfit on small datasets have made it challenging to train accurate deep learning models for brain tumor detection. Transfer learning is a machine learning technique that allows a model trained on one task to be reused for a different task. This approach is effective in brain tumor detection as it allows CNNs to be trained on larger datasets and generalize better to new data. In this research, we propose a transfer learning approach using the Xception model to detect four types of brain tumors: meningioma, pituitary, glioma, and no tumor (healthy brain). The performance of our model was evaluated on two datasets, demonstrating a sensitivity of 98.07%, specificity of 97.83%, accuracy of 98.15%, precision of 98.07%, and f1-score of 98.07%. Additionally, we developed a user-friendly prototype application for easy access to the Xception model for brain tumor detection. The prototype was evaluated on a separate dataset, and the results showed a sensitivity of 95.30%, specificity of 96.07%, accuracy of 95.30%, precision of 95.31%, and f1-score of 95.27%. These results suggest that the Xception model is a promising approach for brain tumor detection. The prototype application provides a convenient and easy-to-use way for clinical practitioners and radiologists to access the model. We believe the model and prototype generated from this research will be valuable tools for diagnosing, quantifying, and monitoring brain tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1