扩链聚对苯二甲酸乙二醇酯结晶诱导的微孔发泡行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-04-22 DOI:10.1177/0262489320919952
Can Jiang, Shuo Han, Shihong Chen, Hongfu Zhou, Xiangdong Wang
{"title":"扩链聚对苯二甲酸乙二醇酯结晶诱导的微孔发泡行为","authors":"Can Jiang, Shuo Han, Shihong Chen, Hongfu Zhou, Xiangdong Wang","doi":"10.1177/0262489320919952","DOIUrl":null,"url":null,"abstract":"The microcellular foaming of chain-extended polyethylene terephthalate (CPET) by crystallization induction method was reported in this article. The crystallization behaviors of various polyethylene terephthalate (PET) samples which were affected by the combined effect of pyromellitic dianhydride, Surlyn, and CO2 were investigated. After Surlyn was added to CPET, the crystal nucleation of various CPET samples was improved, and numerous but small spherulites were generated. Two kinds of CPET samples with the content of 0 phr and 1 phr Surlyn were foamed at various temperature by batch foaming method. Changing the saturation temperature could adjust the appearance of high-temperature melting crystals which would affect the final cellular structures in various CPET foams. With the decrease of saturation temperature, the cell size decreased while cell density increased. At the saturation temperature of 265°C and 250°C, the cell density of CPET foam with Surlyn was one magnitude larger than CPET foam without Surlyn. At the saturation temperature of 247°C, the microcellular PET foams with the cell density of 109 cells cm−3 and the cell size less than 10 µm had been developed successfully.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320919952","citationCount":"4","resultStr":"{\"title\":\"Crystallization-induced microcellular foaming behaviors of chain-extended polyethylene terephthalate\",\"authors\":\"Can Jiang, Shuo Han, Shihong Chen, Hongfu Zhou, Xiangdong Wang\",\"doi\":\"10.1177/0262489320919952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microcellular foaming of chain-extended polyethylene terephthalate (CPET) by crystallization induction method was reported in this article. The crystallization behaviors of various polyethylene terephthalate (PET) samples which were affected by the combined effect of pyromellitic dianhydride, Surlyn, and CO2 were investigated. After Surlyn was added to CPET, the crystal nucleation of various CPET samples was improved, and numerous but small spherulites were generated. Two kinds of CPET samples with the content of 0 phr and 1 phr Surlyn were foamed at various temperature by batch foaming method. Changing the saturation temperature could adjust the appearance of high-temperature melting crystals which would affect the final cellular structures in various CPET foams. With the decrease of saturation temperature, the cell size decreased while cell density increased. At the saturation temperature of 265°C and 250°C, the cell density of CPET foam with Surlyn was one magnitude larger than CPET foam without Surlyn. At the saturation temperature of 247°C, the microcellular PET foams with the cell density of 109 cells cm−3 and the cell size less than 10 µm had been developed successfully.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489320919952\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489320919952\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489320919952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

本文报道了用结晶诱导法制备长链聚对苯二甲酸乙二醇酯(CPET)的微孔发泡。研究了聚对苯二甲酸乙二醇酯(PET)样品在二酐、苏林和CO2共同作用下的结晶行为。在CPET中加入Surlyn后,各种CPET样品的结晶成核得到改善,生成了大量但细小的球晶。采用间歇发泡法,在不同温度下对含0 phr和1 phr苏林的两种CPET样品进行了发泡。改变饱和温度可以调节高温熔融晶体的形貌,从而影响各种CPET泡沫的最终胞状结构。随着饱和温度的降低,细胞尺寸减小,细胞密度增大。饱和温度为265℃和250℃时,含苏林的CPET泡沫的孔密度比不含苏林的CPET泡沫大一个数量级。在247℃的饱和温度下,成功制备了细胞密度为109 cells cm−3,细胞尺寸小于10µm的PET微孔泡沫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystallization-induced microcellular foaming behaviors of chain-extended polyethylene terephthalate
The microcellular foaming of chain-extended polyethylene terephthalate (CPET) by crystallization induction method was reported in this article. The crystallization behaviors of various polyethylene terephthalate (PET) samples which were affected by the combined effect of pyromellitic dianhydride, Surlyn, and CO2 were investigated. After Surlyn was added to CPET, the crystal nucleation of various CPET samples was improved, and numerous but small spherulites were generated. Two kinds of CPET samples with the content of 0 phr and 1 phr Surlyn were foamed at various temperature by batch foaming method. Changing the saturation temperature could adjust the appearance of high-temperature melting crystals which would affect the final cellular structures in various CPET foams. With the decrease of saturation temperature, the cell size decreased while cell density increased. At the saturation temperature of 265°C and 250°C, the cell density of CPET foam with Surlyn was one magnitude larger than CPET foam without Surlyn. At the saturation temperature of 247°C, the microcellular PET foams with the cell density of 109 cells cm−3 and the cell size less than 10 µm had been developed successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1