湍流预混火焰的多重映射条件混合时间尺度

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2022-10-21 DOI:10.1007/s10494-022-00375-1
Nadezhda Iaroslavtceva, Andreas Kronenburg, Oliver T. Stein
{"title":"湍流预混火焰的多重映射条件混合时间尺度","authors":"Nadezhda Iaroslavtceva,&nbsp;Andreas Kronenburg,&nbsp;Oliver T. Stein","doi":"10.1007/s10494-022-00375-1","DOIUrl":null,"url":null,"abstract":"<div><p>A novel multiple mapping conditioning (MMC) mixing time scale model for turbulent premixed combustion has been developed. It combines time scales for the flamelet and distributed flame regimes with the aid of a blending function. The blending function serves two purposes. Firstly, it helps to identify zones where the premixed flame resides and where the time scale associated with the premixed flame shall be used. Secondly, it uses the Karlovitz number to identify the turbulent premixed combustion regime and to reduce the weighting of the premixed flame time scale if Karlovitz numbers are high and deviations from the flamelet regime are expected. A series of three-dimensional direct numerical simulations (DNS) of statistically one dimensional, freely propagating turbulent methane-air flames provides a wide range of turbulent combustion regimes for the mixing model validation. The new mixing time scale provides correct predictions of the flame speed of freely propagating turbulent flames which could not be matched by most recognized mixing models. The turbulent flame structure predicted by the new model is in good agreement with DNS for all combustion regimes from flamelet to the thickened reaction zone.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"110 2","pages":"395 - 415"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-022-00375-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Multiple Mapping Conditioning Mixing Time Scales for Turbulent Premixed Flames\",\"authors\":\"Nadezhda Iaroslavtceva,&nbsp;Andreas Kronenburg,&nbsp;Oliver T. Stein\",\"doi\":\"10.1007/s10494-022-00375-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel multiple mapping conditioning (MMC) mixing time scale model for turbulent premixed combustion has been developed. It combines time scales for the flamelet and distributed flame regimes with the aid of a blending function. The blending function serves two purposes. Firstly, it helps to identify zones where the premixed flame resides and where the time scale associated with the premixed flame shall be used. Secondly, it uses the Karlovitz number to identify the turbulent premixed combustion regime and to reduce the weighting of the premixed flame time scale if Karlovitz numbers are high and deviations from the flamelet regime are expected. A series of three-dimensional direct numerical simulations (DNS) of statistically one dimensional, freely propagating turbulent methane-air flames provides a wide range of turbulent combustion regimes for the mixing model validation. The new mixing time scale provides correct predictions of the flame speed of freely propagating turbulent flames which could not be matched by most recognized mixing models. The turbulent flame structure predicted by the new model is in good agreement with DNS for all combustion regimes from flamelet to the thickened reaction zone.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"110 2\",\"pages\":\"395 - 415\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-022-00375-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-022-00375-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00375-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

建立了紊流预混燃烧的多重映射调节(MMC)混合时标模型。它结合了时间尺度的火焰和分布式火焰制度的援助,混合功能。混合函数有两个目的。首先,它有助于确定预混火焰所在的区域,以及使用预混火焰相关的时间尺度。其次,它使用Karlovitz数来识别湍流预混燃烧状态,并在Karlovitz数较高且预计会偏离小火焰状态时减少预混火焰时间尺度的权重。一系列的三维直接数值模拟(DNS)统计一维,自由传播的湍流甲烷-空气火焰提供了广泛的湍流燃烧状态的混合模型验证。新的混合时间尺度对自由传播湍流火焰的火焰速度提供了正确的预测,这是大多数公认的混合模型所不能匹配的。新模型预测的从小火焰到增稠反应区的所有燃烧形式的湍流火焰结构都与DNS很好地吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Mapping Conditioning Mixing Time Scales for Turbulent Premixed Flames

A novel multiple mapping conditioning (MMC) mixing time scale model for turbulent premixed combustion has been developed. It combines time scales for the flamelet and distributed flame regimes with the aid of a blending function. The blending function serves two purposes. Firstly, it helps to identify zones where the premixed flame resides and where the time scale associated with the premixed flame shall be used. Secondly, it uses the Karlovitz number to identify the turbulent premixed combustion regime and to reduce the weighting of the premixed flame time scale if Karlovitz numbers are high and deviations from the flamelet regime are expected. A series of three-dimensional direct numerical simulations (DNS) of statistically one dimensional, freely propagating turbulent methane-air flames provides a wide range of turbulent combustion regimes for the mixing model validation. The new mixing time scale provides correct predictions of the flame speed of freely propagating turbulent flames which could not be matched by most recognized mixing models. The turbulent flame structure predicted by the new model is in good agreement with DNS for all combustion regimes from flamelet to the thickened reaction zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Numerical Simulation of Hydrodynamic Noises during Bubble Rising Process High Speed Particle Image Velocimetry in a Large Engine Prechamber The Aerodynamic Breakup and Interactions of Evaporating Water Droplets with a Propagating Shock Wave Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness Installation Effects on Jet Aeroacoustics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1