利用杂交遗传规划和蛾焰优化器优化人工光合光特性的水培莴苣蒸散量

IF 0.6 Q4 AGRONOMY Agrivita Pub Date : 2023-06-01 DOI:10.17503/agrivita.v45i2.3786
M. G. Bautista, R. Concepcion II, A. Bandala, Christan Hail R. Mendigoria, E. Dadios
{"title":"利用杂交遗传规划和蛾焰优化器优化人工光合光特性的水培莴苣蒸散量","authors":"M. G. Bautista, R. Concepcion II, A. Bandala, Christan Hail R. Mendigoria, E. Dadios","doi":"10.17503/agrivita.v45i2.3786","DOIUrl":null,"url":null,"abstract":"Land and water resources, climate change, and disaster risks significantly affect the agricultural sector. An effective solution for growing crops to improve productivity and optimize the use of resources is through controlled-environment agriculture (CEA). Evapotranspiration (ET) is an important greenhouse crop attribute that can be optimized for optimum plant growth. Light intensity and radiation are significant for controlling ET. To address this challenge, this study successfully determined the properties of optimum artificial light for minimum evapotranspiration rate of head development-stage and harvest-stage lettuce under light-period and dark-period using genetic programming and bio-inspired algorithms namely, grey wolf optimization (GWO), whale optimization algorithm (WOA), dragonfly algorithm (DA), and moth flame optimization (MFO). MFO provided the optimized global solution for the configured models. Results showed that head development-stage lettuce requires higher light intensity with lower visible to infrared radiation ratio (Vis/IR) than harvest-stage lettuce when exposed to light. On the other hand, harvest-stage lettuce requires higher light intensity with lower Vis/IR than head development-stage under dark-period respiration reaction. Findings of this study can be utilized in growing and improving yield crops in controlled-environment agriculture.","PeriodicalId":44658,"journal":{"name":"Agrivita","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Aquaponic Lettuce Evapotranspiration Based on Artificial Photosynthetic Light Properties Using Hybrid Genetic Programming and Moth Flame Optimizer\",\"authors\":\"M. G. Bautista, R. Concepcion II, A. Bandala, Christan Hail R. Mendigoria, E. Dadios\",\"doi\":\"10.17503/agrivita.v45i2.3786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land and water resources, climate change, and disaster risks significantly affect the agricultural sector. An effective solution for growing crops to improve productivity and optimize the use of resources is through controlled-environment agriculture (CEA). Evapotranspiration (ET) is an important greenhouse crop attribute that can be optimized for optimum plant growth. Light intensity and radiation are significant for controlling ET. To address this challenge, this study successfully determined the properties of optimum artificial light for minimum evapotranspiration rate of head development-stage and harvest-stage lettuce under light-period and dark-period using genetic programming and bio-inspired algorithms namely, grey wolf optimization (GWO), whale optimization algorithm (WOA), dragonfly algorithm (DA), and moth flame optimization (MFO). MFO provided the optimized global solution for the configured models. Results showed that head development-stage lettuce requires higher light intensity with lower visible to infrared radiation ratio (Vis/IR) than harvest-stage lettuce when exposed to light. On the other hand, harvest-stage lettuce requires higher light intensity with lower Vis/IR than head development-stage under dark-period respiration reaction. Findings of this study can be utilized in growing and improving yield crops in controlled-environment agriculture.\",\"PeriodicalId\":44658,\"journal\":{\"name\":\"Agrivita\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrivita\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17503/agrivita.v45i2.3786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrivita","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17503/agrivita.v45i2.3786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

土地和水资源、气候变化和灾害风险对农业部门产生重大影响。种植作物以提高生产力和优化资源利用的有效解决方案是通过控制环境农业(CEA)。蒸发蒸腾量(ET)是温室作物的一个重要属性,可以对其进行优化以实现最佳植物生长。光照强度和辐射对控制ET具有重要意义。为了应对这一挑战,本研究使用遗传规划和生物启发算法,即灰狼优化(GWO),成功地确定了光照期和暗照期莴苣头部发育期和收获期蒸散率最小的最佳人工光特性,鲸鱼优化算法(WOA)、蜻蜓算法(DA)和蛾火焰优化(MFO)。MFO为配置的模型提供了优化的全局解决方案。结果表明,与收获期莴苣相比,在光照下,头部发育期莴苣需要更高的光照强度和更低的可见光/红外辐射比(Vis/IR)。另一方面,在暗期呼吸反应下,收获期莴苣比头部发育期需要更高的光照强度和更低的Vis/IR。这项研究的结果可用于在受控环境农业中种植和提高作物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Aquaponic Lettuce Evapotranspiration Based on Artificial Photosynthetic Light Properties Using Hybrid Genetic Programming and Moth Flame Optimizer
Land and water resources, climate change, and disaster risks significantly affect the agricultural sector. An effective solution for growing crops to improve productivity and optimize the use of resources is through controlled-environment agriculture (CEA). Evapotranspiration (ET) is an important greenhouse crop attribute that can be optimized for optimum plant growth. Light intensity and radiation are significant for controlling ET. To address this challenge, this study successfully determined the properties of optimum artificial light for minimum evapotranspiration rate of head development-stage and harvest-stage lettuce under light-period and dark-period using genetic programming and bio-inspired algorithms namely, grey wolf optimization (GWO), whale optimization algorithm (WOA), dragonfly algorithm (DA), and moth flame optimization (MFO). MFO provided the optimized global solution for the configured models. Results showed that head development-stage lettuce requires higher light intensity with lower visible to infrared radiation ratio (Vis/IR) than harvest-stage lettuce when exposed to light. On the other hand, harvest-stage lettuce requires higher light intensity with lower Vis/IR than head development-stage under dark-period respiration reaction. Findings of this study can be utilized in growing and improving yield crops in controlled-environment agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agrivita
Agrivita AGRONOMY-
CiteScore
2.20
自引率
12.50%
发文量
62
审稿时长
18 weeks
期刊介绍: The aims of the journal are to publish and disseminate high quality, original research papers and article review in plant science i.e.: -agronomy -horticulture -plant breeding -soil sciences -plant protection -other pertinent field related to plant production
期刊最新文献
Non-Destructive Model for Estimating Leaf Area and Growth of Cnidoscolus aconitifolius Cultivated Using Different Stem Diameter of the Semi Hardwood Cuttings Increased Production and Flavonoids of Two Celery Highland Varieties (Apium graveolens L.) by Endophytic Bacteria in Lowland Amylose Accumulation Under Water Deficit in Glutinous Rice (Oryza sativa L. Var. glutinosa) Katokkon Pepper (Capsicum chinense Jacq.) Ploidy Determination by Morphological Characteristic and Flow Cytometry Analysis Effect of Co-Fertilizer Application and Dolomite Amendments on Yield and Grain Quality of Rice Grown on Post-Active Acid Sulfate Soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1