利用染色质核受体相互作用量化内分泌、旁分泌和自分泌信号

M. Taves, J. Ashwell
{"title":"利用染色质核受体相互作用量化内分泌、旁分泌和自分泌信号","authors":"M. Taves, J. Ashwell","doi":"10.1177/1550762919899643","DOIUrl":null,"url":null,"abstract":"Hormone-activated nuclear receptors (NRs) control myriad cellular processes. The classical paradigm for hormone delivery is secretion from endocrine organs and blood-borne distribution to responding cells. However, many hormones can also be synthesized in the same tissues in which responding cells are found (paracrine signaling). In both endocrine and paracrine signaling, numerous factors affect hormone availability to target cell NRs, including hormone access to and sequestration by carrier proteins, transport across cell membranes, metabolism, and receptor availability. These factors can differ dramatically during development, between anatomical locations, and across cell types, and may cause highly variable responses to the same hormone signal. This has been difficult to study because current approaches are unable to quantify cell-intrinsic exposure to NR hormone ligands, precluding assessment of cell-specific hormone access and signaling. We have used the ligand-dependent interaction of the endogenous glucocorticoid (GC) receptor with chromatin as a biosensor that quantifies systemic access of GCs to cells within tissues at the single cell level, showing that tissues are buffered against circulating GCs. This approach also showed highly targeted paracrine GC signaling within the thymus, where GCs promote the positive selection of thymocytes with moderate affinity for self-antigens and the development of a safe and effective T-cell repertoire. We believe that this and complementary biosensor approaches will be useful to identify endocrine and paracrine target cells in situ and quantify their exposure to hormones regardless of the mode of delivery.","PeriodicalId":87415,"journal":{"name":"Nuclear receptor signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1550762919899643","citationCount":"4","resultStr":"{\"title\":\"Using Chromatin-Nuclear Receptor Interactions to Quantitate Endocrine, Paracrine, and Autocrine Signaling\",\"authors\":\"M. Taves, J. Ashwell\",\"doi\":\"10.1177/1550762919899643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hormone-activated nuclear receptors (NRs) control myriad cellular processes. The classical paradigm for hormone delivery is secretion from endocrine organs and blood-borne distribution to responding cells. However, many hormones can also be synthesized in the same tissues in which responding cells are found (paracrine signaling). In both endocrine and paracrine signaling, numerous factors affect hormone availability to target cell NRs, including hormone access to and sequestration by carrier proteins, transport across cell membranes, metabolism, and receptor availability. These factors can differ dramatically during development, between anatomical locations, and across cell types, and may cause highly variable responses to the same hormone signal. This has been difficult to study because current approaches are unable to quantify cell-intrinsic exposure to NR hormone ligands, precluding assessment of cell-specific hormone access and signaling. We have used the ligand-dependent interaction of the endogenous glucocorticoid (GC) receptor with chromatin as a biosensor that quantifies systemic access of GCs to cells within tissues at the single cell level, showing that tissues are buffered against circulating GCs. This approach also showed highly targeted paracrine GC signaling within the thymus, where GCs promote the positive selection of thymocytes with moderate affinity for self-antigens and the development of a safe and effective T-cell repertoire. We believe that this and complementary biosensor approaches will be useful to identify endocrine and paracrine target cells in situ and quantify their exposure to hormones regardless of the mode of delivery.\",\"PeriodicalId\":87415,\"journal\":{\"name\":\"Nuclear receptor signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1550762919899643\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear receptor signaling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1550762919899643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear receptor signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1550762919899643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

激素激活的核受体(nr)控制着无数的细胞过程。激素传递的经典范式是内分泌器官的分泌和血液传播到应答细胞。然而,许多激素也可以在有反应细胞的组织中合成(旁分泌信号)。在内分泌和旁分泌信号中,许多因素影响激素对靶细胞nr的可用性,包括激素通过载体蛋白的获取和隔离、跨细胞膜运输、代谢和受体可用性。这些因素在发育过程中、不同解剖位置和不同细胞类型之间可能存在显著差异,并且可能对相同的激素信号产生高度不同的反应。这很难研究,因为目前的方法无法量化细胞内在暴露于NR激素配体,从而排除了对细胞特异性激素通路和信号传导的评估。我们使用内源性糖皮质激素(GC)受体与染色质的配体依赖相互作用作为生物传感器,量化GCs在单细胞水平上进入组织内细胞的系统通路,表明组织对循环GCs有缓冲作用。该方法还显示了胸腺内高度靶向的旁分泌GC信号,其中GC促进胸腺细胞对自身抗原具有中等亲和力的阳性选择和安全有效的t细胞库的发展。我们相信,这种和互补的生物传感器方法将有助于原位识别内分泌和旁分泌靶细胞,并量化它们对激素的暴露,而不管其递送方式如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Chromatin-Nuclear Receptor Interactions to Quantitate Endocrine, Paracrine, and Autocrine Signaling
Hormone-activated nuclear receptors (NRs) control myriad cellular processes. The classical paradigm for hormone delivery is secretion from endocrine organs and blood-borne distribution to responding cells. However, many hormones can also be synthesized in the same tissues in which responding cells are found (paracrine signaling). In both endocrine and paracrine signaling, numerous factors affect hormone availability to target cell NRs, including hormone access to and sequestration by carrier proteins, transport across cell membranes, metabolism, and receptor availability. These factors can differ dramatically during development, between anatomical locations, and across cell types, and may cause highly variable responses to the same hormone signal. This has been difficult to study because current approaches are unable to quantify cell-intrinsic exposure to NR hormone ligands, precluding assessment of cell-specific hormone access and signaling. We have used the ligand-dependent interaction of the endogenous glucocorticoid (GC) receptor with chromatin as a biosensor that quantifies systemic access of GCs to cells within tissues at the single cell level, showing that tissues are buffered against circulating GCs. This approach also showed highly targeted paracrine GC signaling within the thymus, where GCs promote the positive selection of thymocytes with moderate affinity for self-antigens and the development of a safe and effective T-cell repertoire. We believe that this and complementary biosensor approaches will be useful to identify endocrine and paracrine target cells in situ and quantify their exposure to hormones regardless of the mode of delivery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPAR-gamma Fun(gi) With Prostaglandin Using Chromatin-Nuclear Receptor Interactions to Quantitate Endocrine, Paracrine, and Autocrine Signaling GR Utilizes a Co-Chaperone Cytoplasmic CAR Retention Protein to Form an N/C Interaction. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1