ni - co负载Al2O3-MgO催化剂上甲烷干重整制合成气研究

Nur Azeanni Abd Ghani, Abbas Azapour, Syed Anuar Faua’ad Syed Muhammad, Nasser Mohamed Ramli, Dai-Viet N. Vo, Bawadi Abdullah
{"title":"ni - co负载Al2O3-MgO催化剂上甲烷干重整制合成气研究","authors":"Nur Azeanni Abd Ghani,&nbsp;Abbas Azapour,&nbsp;Syed Anuar Faua’ad Syed Muhammad,&nbsp;Nasser Mohamed Ramli,&nbsp;Dai-Viet N. Vo,&nbsp;Bawadi Abdullah","doi":"10.1007/s13203-018-0218-5","DOIUrl":null,"url":null,"abstract":"<p>This research project focuses on the development of catalysts for syngas production by synthesizing Ni–Co bimetallic catalyst using aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) and magnesium oxide (MgO) as the catalyst support. Ni/Al<sub>2</sub>O<sub>3</sub> (CAT-1), Ni–Co/Al<sub>2</sub>O<sub>3</sub> (CAT-2) and Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO (CAT-3) nanocatalysts were synthesized by sol–gel method with citric acid as the gelling agent, and used in the dry reforming of methane (DRM). The objective of this study is to investigate the effects of Al<sub>2</sub>O<sub>3</sub> and MgO addition on the catalytic properties and the reaction performance of synthesized catalysts in the DRM reactions. The characteristics of the catalyst are studied using field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), transmission electron microscopy, H<sub>2</sub>-temperature programmed reduction, CO<sub>2</sub>-temperature programmed desorption and temperature programmed oxidation analysis. The characteristics of the catalyst are dependent on the type of support, which influences the catalytic performances. FESEM analysis showed that CAT-3 has irregular shape morphology, and is well dispersed onto the catalyst support. BET results demonstrate high surface area of the synthesized catalyst due to high calcination temperature during catalysts preparation. Moreover, the formation of MgAl<sub>2</sub>O<sub>4</sub> spinel-type solution in CAT-3 is proved by XRD analysis due to the interaction between alumina lattice and magnesium metal which has high resistance to coke formation, leading to stronger metal surface interaction within the catalyst. The CO<sub>2</sub> methane dry reforming is executed in the tubular furnace reactor at 1073.15?K, 1?atm and CH<sub>4</sub>/CO<sub>2</sub> ratio of unity to investigate the effect of the mentioned catalysts. Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO gave the highest catalyst performance compared to the other synthesized catalysts owning to the strong metal–support interaction, high stability and significant resistance to carbon deposition during the DRM reaction.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"8 4","pages":"263 - 270"},"PeriodicalIF":0.1250,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-018-0218-5","citationCount":"22","resultStr":"{\"title\":\"Dry reforming of methane for syngas production over Ni–Co-supported Al2O3–MgO catalysts\",\"authors\":\"Nur Azeanni Abd Ghani,&nbsp;Abbas Azapour,&nbsp;Syed Anuar Faua’ad Syed Muhammad,&nbsp;Nasser Mohamed Ramli,&nbsp;Dai-Viet N. Vo,&nbsp;Bawadi Abdullah\",\"doi\":\"10.1007/s13203-018-0218-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research project focuses on the development of catalysts for syngas production by synthesizing Ni–Co bimetallic catalyst using aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) and magnesium oxide (MgO) as the catalyst support. Ni/Al<sub>2</sub>O<sub>3</sub> (CAT-1), Ni–Co/Al<sub>2</sub>O<sub>3</sub> (CAT-2) and Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO (CAT-3) nanocatalysts were synthesized by sol–gel method with citric acid as the gelling agent, and used in the dry reforming of methane (DRM). The objective of this study is to investigate the effects of Al<sub>2</sub>O<sub>3</sub> and MgO addition on the catalytic properties and the reaction performance of synthesized catalysts in the DRM reactions. The characteristics of the catalyst are studied using field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), transmission electron microscopy, H<sub>2</sub>-temperature programmed reduction, CO<sub>2</sub>-temperature programmed desorption and temperature programmed oxidation analysis. The characteristics of the catalyst are dependent on the type of support, which influences the catalytic performances. FESEM analysis showed that CAT-3 has irregular shape morphology, and is well dispersed onto the catalyst support. BET results demonstrate high surface area of the synthesized catalyst due to high calcination temperature during catalysts preparation. Moreover, the formation of MgAl<sub>2</sub>O<sub>4</sub> spinel-type solution in CAT-3 is proved by XRD analysis due to the interaction between alumina lattice and magnesium metal which has high resistance to coke formation, leading to stronger metal surface interaction within the catalyst. The CO<sub>2</sub> methane dry reforming is executed in the tubular furnace reactor at 1073.15?K, 1?atm and CH<sub>4</sub>/CO<sub>2</sub> ratio of unity to investigate the effect of the mentioned catalysts. Ni–Co/Al<sub>2</sub>O<sub>3</sub>–MgO gave the highest catalyst performance compared to the other synthesized catalysts owning to the strong metal–support interaction, high stability and significant resistance to carbon deposition during the DRM reaction.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"8 4\",\"pages\":\"263 - 270\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-018-0218-5\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-018-0218-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-018-0218-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本课题主要研究以氧化铝(Al2O3)和氧化镁(MgO)为催化剂载体合成镍钴双金属催化剂的合成气催化剂的开发。以柠檬酸为胶凝剂,采用溶胶-凝胶法制备了Ni/Al2O3 (CAT-1)、Ni - co /Al2O3 (CAT-2)和Ni - co /Al2O3 - mgo (CAT-3)纳米催化剂,并将其应用于甲烷干重整(DRM)中。本研究的目的是研究Al2O3和MgO添加量对合成催化剂在DRM反应中的催化性能和反应性能的影响。采用场发射扫描电镜(FESEM)、布鲁诺尔-埃米特-泰勒(BET)、x射线粉末衍射(XRD)、透射电镜、h2 -温度程序还原、co2 -温度程序解吸和温度程序氧化分析等方法研究了催化剂的特性。催化剂的特性取决于载体的类型,载体的类型会影响催化剂的催化性能。FESEM分析表明,CAT-3形态不规则,在催化剂载体上分散良好。BET结果表明,由于催化剂制备过程中煅烧温度较高,合成的催化剂具有较高的比表面积。此外,XRD分析证实了CAT-3中MgAl2O4尖晶石型溶液的形成是由于氧化铝晶格与金属镁的相互作用,金属镁具有较高的抗结焦性,导致催化剂内部金属表面相互作用更强。CO2甲烷干式重整在管式炉反应器中进行,温度为1073.15?K, 1 ?以atm和CH4/CO2的比值为单位考察上述催化剂的影响。在DRM反应中,Ni-Co / Al2O3-MgO具有较强的金属-载体相互作用、较高的稳定性和较强的抗积碳能力,因此与其他合成催化剂相比,Ni-Co / Al2O3-MgO具有最高的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dry reforming of methane for syngas production over Ni–Co-supported Al2O3–MgO catalysts

This research project focuses on the development of catalysts for syngas production by synthesizing Ni–Co bimetallic catalyst using aluminum oxide (Al2O3) and magnesium oxide (MgO) as the catalyst support. Ni/Al2O3 (CAT-1), Ni–Co/Al2O3 (CAT-2) and Ni–Co/Al2O3–MgO (CAT-3) nanocatalysts were synthesized by sol–gel method with citric acid as the gelling agent, and used in the dry reforming of methane (DRM). The objective of this study is to investigate the effects of Al2O3 and MgO addition on the catalytic properties and the reaction performance of synthesized catalysts in the DRM reactions. The characteristics of the catalyst are studied using field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), transmission electron microscopy, H2-temperature programmed reduction, CO2-temperature programmed desorption and temperature programmed oxidation analysis. The characteristics of the catalyst are dependent on the type of support, which influences the catalytic performances. FESEM analysis showed that CAT-3 has irregular shape morphology, and is well dispersed onto the catalyst support. BET results demonstrate high surface area of the synthesized catalyst due to high calcination temperature during catalysts preparation. Moreover, the formation of MgAl2O4 spinel-type solution in CAT-3 is proved by XRD analysis due to the interaction between alumina lattice and magnesium metal which has high resistance to coke formation, leading to stronger metal surface interaction within the catalyst. The CO2 methane dry reforming is executed in the tubular furnace reactor at 1073.15?K, 1?atm and CH4/CO2 ratio of unity to investigate the effect of the mentioned catalysts. Ni–Co/Al2O3–MgO gave the highest catalyst performance compared to the other synthesized catalysts owning to the strong metal–support interaction, high stability and significant resistance to carbon deposition during the DRM reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
期刊最新文献
Applied petrochemical research: final issue La-Faujasite zeolite activated with boron trifluoride: synthesis and application as solid acid catalyst for isobutane–isobutene alkylation Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid–liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm Trending approaches on demulsification of crude oil in the petroleum industry Synthesis and study of aroylethyl(ethyl)-xanthates as stabilizers of polymeric materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1