微流体连续流动反应器中量子点合成的成核控制

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Nanotechnology Pub Date : 2023-01-16 DOI:10.3389/fnano.2022.1096267
Eun Byoel Kim, Kyle Tomczak, H. B. Chandrasiri, Marcell Pálmai, A. Ghaznavi, D. Gritsenko, J. Xu, P. Snee
{"title":"微流体连续流动反应器中量子点合成的成核控制","authors":"Eun Byoel Kim, Kyle Tomczak, H. B. Chandrasiri, Marcell Pálmai, A. Ghaznavi, D. Gritsenko, J. Xu, P. Snee","doi":"10.3389/fnano.2022.1096267","DOIUrl":null,"url":null,"abstract":"The use of microfluidics in chemical synthesis is topical due to the potential to improve reproducibility and the ability promptly interrogate a wide range of reaction parameters, the latter of which is necessary for the training of artificial intelligence (AI) algorithms. Applying microfluidic techniques to semiconductor nanocrystals, or quantum dots (QDs), is challenging due to the need for a high-temperature nucleation event followed by particle growth at lower temperatures. Such a high-temperature gradient can be realized using complex, segmented microfluidic reactor designs, which represents an engineering approach. Here, an alternative chemical approach is demonstrated using the cluster seed method of nanoparticle synthesis in a simple microfluidic reactor system. This enables quantum dot nucleation at lower temperatures due to the presence of molecular organometallic compounds (NMe4)4[Cd10Se4(SPh)16] and (NMe4)4[Zn10Se4(SPh)16]. This integration of cluster seeding with microfluidics affords a new mechanism to tailor the reaction conditions for optimizing yields and tuning product properties. Graphical Abstract","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nucleation control of quantum dot synthesis in a microfluidic continuous flow reactor\",\"authors\":\"Eun Byoel Kim, Kyle Tomczak, H. B. Chandrasiri, Marcell Pálmai, A. Ghaznavi, D. Gritsenko, J. Xu, P. Snee\",\"doi\":\"10.3389/fnano.2022.1096267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of microfluidics in chemical synthesis is topical due to the potential to improve reproducibility and the ability promptly interrogate a wide range of reaction parameters, the latter of which is necessary for the training of artificial intelligence (AI) algorithms. Applying microfluidic techniques to semiconductor nanocrystals, or quantum dots (QDs), is challenging due to the need for a high-temperature nucleation event followed by particle growth at lower temperatures. Such a high-temperature gradient can be realized using complex, segmented microfluidic reactor designs, which represents an engineering approach. Here, an alternative chemical approach is demonstrated using the cluster seed method of nanoparticle synthesis in a simple microfluidic reactor system. This enables quantum dot nucleation at lower temperatures due to the presence of molecular organometallic compounds (NMe4)4[Cd10Se4(SPh)16] and (NMe4)4[Zn10Se4(SPh)16]. This integration of cluster seeding with microfluidics affords a new mechanism to tailor the reaction conditions for optimizing yields and tuning product properties. Graphical Abstract\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.1096267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.1096267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

微流体在化学合成中的使用是热门的,因为它有可能提高再现性和快速询问广泛反应参数的能力,后者对于人工智能(AI)算法的训练是必要的。将微流体技术应用于半导体纳米晶体或量子点(QDs)是具有挑战性的,因为需要高温成核事件,然后在较低温度下进行粒子生长。这种高温梯度可以使用复杂的分段微流体反应器设计来实现,这代表了一种工程方法。在这里,在一个简单的微流体反应器系统中,使用纳米颗粒合成的簇种子方法展示了一种替代的化学方法。由于存在分子有机金属化合物(NMe4)4[Cd10Se4(SPh)16]和(NMe4)4[Zn10Se4(SPh)16],这使得量子点能够在较低的温度下成核。这种团簇接种与微流体的集成提供了一种新的机制来调整反应条件,以优化产量和调节产品性能。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nucleation control of quantum dot synthesis in a microfluidic continuous flow reactor
The use of microfluidics in chemical synthesis is topical due to the potential to improve reproducibility and the ability promptly interrogate a wide range of reaction parameters, the latter of which is necessary for the training of artificial intelligence (AI) algorithms. Applying microfluidic techniques to semiconductor nanocrystals, or quantum dots (QDs), is challenging due to the need for a high-temperature nucleation event followed by particle growth at lower temperatures. Such a high-temperature gradient can be realized using complex, segmented microfluidic reactor designs, which represents an engineering approach. Here, an alternative chemical approach is demonstrated using the cluster seed method of nanoparticle synthesis in a simple microfluidic reactor system. This enables quantum dot nucleation at lower temperatures due to the presence of molecular organometallic compounds (NMe4)4[Cd10Se4(SPh)16] and (NMe4)4[Zn10Se4(SPh)16]. This integration of cluster seeding with microfluidics affords a new mechanism to tailor the reaction conditions for optimizing yields and tuning product properties. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
期刊最新文献
Interface-enhanced conductivities in surfactant-mediated, solution-grown ionic crystalline complexes Formation of two-dimensional laser-induced periodic surface structures on titanium by GHz burst mode femtosecond laser pulses Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability Current status and applications of photovoltaic technology in wearable sensors: a review Single-layer MoS2 solid-state nanopores for coarse-grained sequencing of proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1