{"title":"黄体-177标记的前列腺特异性膜抗原-617用于前列腺癌的分子成像和靶向放射治疗","authors":"Rien Ritawidya, Hendris Wongso, Nurmaya Effendi, Anung Pujiyanto, Wening Lestari, Herlan Setiawan, Titis Sekar Humani","doi":"10.34172/apb.2023.079","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [<sup>177</sup>Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with <sup>177</sup>Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.</p>","PeriodicalId":7256,"journal":{"name":"Advanced pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer.\",\"authors\":\"Rien Ritawidya, Hendris Wongso, Nurmaya Effendi, Anung Pujiyanto, Wening Lestari, Herlan Setiawan, Titis Sekar Humani\",\"doi\":\"10.34172/apb.2023.079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [<sup>177</sup>Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with <sup>177</sup>Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.</p>\",\"PeriodicalId\":7256,\"journal\":{\"name\":\"Advanced pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced pharmaceutical bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/apb.2023.079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced pharmaceutical bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/apb.2023.079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer.
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.